

Who is Chad Green
Director of IT Architecture
Atria Senior Living / Glennis Solutions

chadgreen@chadgreen.com
TaleLearnCode
ChadGreen.com
ChadGreen & TaleLearnCode
ChadwickEGreen

Azure Cosmos DB

A globally distributed,
massively scalable,

multi-model database
service

What is Cosmos DB

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Presenter
Presentation Notes
Turnkey Global DistributionEnables you to build highly responsive and highly available applications worldwideTransparently replicates your data wherever your users are, so your users can interact with a replica of the data that is closest to themAdd or remove any of the Azure regions to your Cosmos account at any time, with a click of a buttonCosmos DB will seamlessly replicate your data to all the regions associated with your account while your application continues to be highly available, thanks to the multi-homing capabilitiesAlways OnBy virtue of deep integration with Azure infrastructure and transparent multi-master replication, Cosmos DB provides 99.999% high availability for both reads and writes.Provides you the ability to programmatically or via Portal invoke the regional failover of your Cosmos accountHelps ensure that your application is designed to failover in the case of regional disaster

Azure Cosmos DB

Turnkey global
distribution

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
NEXT: Elastic scale out of storage & throughput

Azure Cosmos DB

Elastic scale out of
storage & throughput

Turnkey global
distribution

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Elastic scalability of throughput and storage, worldwideDesigned with transparent horizontal partitioning and multi-master replicationOffers unprecedent elastic scalability for your writes and reads, all around the globeElastically scale up from thousands to hundreds of millions of requests per second around the global with a single API call and pay only for the throughput (and storage) you needHelps you deal with unexpected spikes in your workloads without having to over-provision for the peak

Azure Cosmos DB

Elastic scale out of
storage & throughput

Turnkey global
distribution

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
NEXT: Guaranteed low latency at the 99th percentile

Azure Cosmos DB

Guaranteed low latency
at the 99th percentile

Turnkey global
distribution

Elastic scale out
of storage & throughput

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Guaranteed low latency at 99th percentile, worldwideUsing Cosmos DB, you can build highly responsive, planet scale applicationsWith its novel multi-master replication protocol and latch free and write-optimized database engine, Cosmos guarantees less than 10-ms latencies for both, reads (indexed) and writes at 99th percentile, all around the worldCapability ensures sustained ingestion of data and blazing-fast queries for highly responsive apps

Azure Cosmos DB

Guaranteed low latency
at the 99th percentile

Turnkey global
distribution

Elastic scale out
of storage & throughput

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
NEXT: Five well-defined consistency models

Azure Cosmos DB

Five well-defined
consistency models

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Strong; Bounded Staleness; Session; Consistent Prefix; Eventual

Azure Cosmos DB

Five well-defined
consistency models

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Strong; Bounded Staleness; Session; Consistent Prefix; Eventual

Azure Cosmos DB

Comprehensive
SLAs

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Industry Leading Comprehensive SLAsFirst and only service to offer industry-leading comprehensive SLAs encompassing 5-nine availability, read and write latency at the 99th percentile, guaranteed throughput, and consistency.

Azure Cosmos DB

Comprehensive
SLAs

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

A globally distributed, massively scalable, multi-model database service

Azure Cosmos DB

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Battle Tested
A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Battle tested database serviceCosmos DB is a foundational service in AzureFor nearly a decade, Cosmos DB has been used by many of Microsoft’s products for mission critical applications at global scaleSkype, Xbox, Office 365, Azure, and many othersOne of the fastest growing services on Azure

Azure Cosmos DB

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Battle Tested

Azure Cosmos DB

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Ubiquitous Regional Presence
A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Ubiquitous regional presenceAzure public cloudAzure China 21Vianet (one of China’s largest internet providers)Azure Germany (data remains in country)Azure Government (4 regions)Azure Government for Department of Defense (2 regions)

Azure Cosmos DB

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Secure by default and
enterprise ready

A globally distributed, massively scalable, multi-model database service

Presenter
Presentation Notes
Secure by default and enterprise readyCertified for a wide array of compliance standardsCSA STAR Certification\CSA STAR AttestationISO 20000-1:2011, 22301:2012, 27001:2013, 27017:2015, 27018:2014SOC 1,2,3DoD SRP Level 2FedRAMP ModerateGxPHIPPAHITRUSTPCI DSSAustralian IREP UnclassifedGermany C5Singapore MTCS Level 3Spain ENS HighEncrypted at rest and in motionProvides row level authorization and adheres to strict security standards

Azure Cosmos DB

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAs

DocumentColumn-family
Key-value Graph

A globally distributed, massively scalable, multi-model database service

Elements in an Azure
Cosmos DB Account
• Provision Azure Cosmos DB Account
• Create database in that account
• Add containers on those databases
• Container can be realized based upon

the data API

Cosmos DB
Account

Database

Container

Container

Collection Table Graph ...

Elements in an Azure
Cosmos DB Account
• Provision Azure Cosmos DB Account
• Create database in that account
• Add containers on those databases
• Container can be realized based upon

the data API

Cosmos DB
Account

Database

Container

Container

Collection Table Graph ...

Elements in an Azure
Cosmos DB Account
• Provision Azure Cosmos DB Account
• Create database in that account
• Add containers on those databases
• Container can be realized based upon

the data API
• Items are realized based upon the

data API

Cosmos DB
Account

Database

Container

ItemsItem

Document Row Vertex Edge ...

Elements in an Azure
Cosmos DB Account
• Provision Azure Cosmos DB Account
• Create database in that account
• Add containers on those databases
• Container can be realized based upon

the data API
• Items are realized based upon the

data API

Cosmos DB
Account

Database

Container

ItemsItem

Document Row Vertex Edge ...

Elements in an Azure
Cosmos DB Account
• Provision Azure Cosmos DB Account
• Create database in that account
• Add containers on those databases
• Container can be realized based upon

the data API
• Items are realized based upon the

data API

Cosmos DB
Account

Database

Container

ItemsStored Procedures

User-Defined Functions

Triggers Conflicts

Merge Procedures

Azure Cosmos DB Architecture

RecordAtom Sequence

Presenter
Presentation Notes
Azure Cosmos DB uses an atom-record-sequence (ARS) system. Basically, the Cosmos DB translates all data models into atom-record-sequence based models.So, everything becomes either an atom, a record, or a sequence.An atom is a primitive type.A record is a structA sequence is an array of either atoms, records, or structs.

Request Units (RUs)

Presenter
Presentation Notes
The cost of all database operations is normalized by Azure Cosmos DB and is expressed by Request Units (or RUs for short). Request unit is a performance currency abstracting the system resources such as CPU, IOPs, and memory that are required to perform the database operations supported by Azure Cosmos DB.The cost to do a point read (i.e. fetching a single item by its ID and partition key value) for a 1-Kb item is 1 RU. All other database operations are similarly assigned a cost using RUs. No matter which API you use to interact with your Azure Cosmos container, costs are always measured by RUs. Whether the database operation is a write, point read, or query, costs are always measured in RUs.You can examine the response header to track the number of RUs that are consumed by any database operation.

Request Unit Considerations

Item Size

Presenter
Presentation Notes
While you estimate the number of RUs consumed by your workload, consider the following factors:Item Size: As the size of an item increases, the number of RUs consumed to read or write the item also increases.

Request Unit Considerations

Item IndexingItem Size

Presenter
Presentation Notes
Item Indexing: By default, each item is automatically indexed. Fewer RUs are consumed if you choose not to index some of your items in a container.

Request Unit Considerations

Item IndexingItem Size Item Property
Count

Presenter
Presentation Notes
Item Property Count: Assuming the default indexing is on all properties, the number of RUs consumed to write an item increases as the item property count increases.

Request Unit Considerations

Item IndexingItem Size Item Property
Count

Indexed
Properties

Presenter
Presentation Notes
Indexed Properties: An index policy on each container determines which properties are indexed by default. To reduce the RU consumption for write operations, limit the number of indexed properties.

Request Unit Considerations

Item IndexingItem Size Item Property
Count

Data
Consistency

Indexed
Properties

Presenter
Presentation Notes
Data Consistency: The strong and bounded staleness consistency levels consume approximately two times more RUs while performing read operation when compared to that of other relaxed consistency levels.

Request Unit Considerations

Item IndexingItem Size Item Property
Count

Data
Consistency

Indexed
Properties Type of Reads

Presenter
Presentation Notes
Types of Reads: Point reads cost significantly fewer RUs than queries.

Request Unit Considerations

Item IndexingItem Size Item Property
Count

Data
Consistency

Indexed
Properties

Query Patterns

Type of Reads

Presenter
Presentation Notes
Query patterns: The complexity of a query affects how many RUs are consumed for an operation. Factors that affect the cost of query operations include:The number of query resultsThe number of predicatesThe nature of the predicatesThe number of user-defined functionsThe size of the source dataThe size of the result setProjectionsThe same query on the same data will always cost the same number of RUs on repeated executions.

Request Unit Considerations

Item IndexingItem Size Item Property
Count

Data
Consistency

Indexed
Properties

Query Patterns

Type of Reads

Script Usage

Presenter
Presentation Notes
Script Usage: As with queries, stored procedures and triggers consume RUs based on the complexity of the operations that are performed. As you develop your application, inspect the request charge header to better understand how much RU capacity each operation consumes.

Estimate RU Costs
Operation Estimated Costs

Create an item 5 RUs

Update an item 10 RUs

Read an item (point read) 1 RU

Delete an Item 5 RUs

Execute a query 10 RUs

Operational RU Costs

Operation Estimated Cost Notes
Create an item 5 RUs Average cost for a 1-Kb item with

less than 5 properties to index
Update an item 10 RUs Average cost for a 1-Kb item with

less than 5 properties to index
Read an item (point-read) 1 RU Average cost for a 1-Kb item
Delete an item 5 RUs
Execute a query 10 RUs Average cost for query that takes

full advantage of indexing and
returns 100 results or less

Partitioning

Logical Partitions

Presenter
Presentation Notes
A logical partition consists of a set of items that have the same partition key.For example, in a container that contains data about food nutrition, all items contain a foodGroup property. You can use foodGroup as the partition key for the container. Group of items that have specific values for foodGroup, such as Beef Products, Baked Products, and Sausages and Luncheon Meats, form distinct logical partitions.There is no limit to the number of logical partitions in your container. Each logical partition can store up to 20Gb of data.

Partitioning

Logical Partitions Physical Partitions

Presenter
Presentation Notes
A container is scaled by distributing data and throughput across physical partitions. Internally, one or more logical partitions are mapped to a single physical partition. Typically smaller containers have many logical partitions but they only require a single physical partition. Unlike logical partitions, physical partitions are an internal implementation of the system and they are entirely managed by Azure Cosmos DB.The number of physical partitions in your container depends on the following:The number of throughput provisioned (each individual physical partition can provide a throughput of up to 10,000 request unites per second).The total data storage (each individual physical partition can store up to 50-Gb of data)There is no limit to the total number of physical partitions in your container. As your provisioned throughput or data size grows, Azure Cosmos DB will automatically create new physical partitions by splitting existing ones. Physical partition splits do not impact your application’s availability. After the physical partition split, all data within a single logical partition will still be stored on the same physical partition. A physical partition split simply creates a new mapping of logical partitions to physical partitions.

Choosing a partition key

Unchanging
Property Value

Presenter
Presentation Notes
For all containers, your partition key should:Be a property that has a value which does not change. If a property is your partition key, you cannot update that property’s value.

Choosing a partition key

Unchanging
Property Value High Cardinality

Presenter
Presentation Notes
Have a high cardinality. In other words, the property should have a wide range of possible values.

Choosing a partition key

Unchanging
Property Value High Cardinality Spreads RU

Consumption

Presenter
Presentation Notes
Spread request unit (RU) consumption and data storage evenly across all logical partitions. This ensures even RU consumption and storage distribution across your physical partitions.Some additional considerations for read-heavy containers

Choosing a partition key

Unchanging
Property Value High Cardinality Spreads RU

Consumption

Common Filter

Presenter
Presentation Notes
For large read-heavy containers, however, you might want to choose a partition key that appears frequently as a filter in your queries.However, if your container is small, you probably do not have enough physical partitions to need to worry about the performance impact of cross-partition queries. Most small containers in Azure Cosmos DB only require one or two physical partitions.Your container will require more than a few physical partitions when either of the following are true:Your container will have over 30,000 RU’s provisionedYour container will store over 100-Gb of data

Using Item Id as the Partition Key

Wide Range of
Possible Values

Balances RU
Consumption

Point Reads Become
Easier

Presenter
Presentation Notes
The item Id is a great partition key choice for the following reasons:There are a wide range of possible values (one unique item Id per item)Because there is a unique item Id per item, the item Id does a great job at evenly balancing RU consumption and data storageYou can easily do efficient point reads since you will always know an item’s partition key if you know it’s item IdSome things to consider when selecting the item Id as the partition key include:

Using Item Id as the Partition Key

Wide Range of
Possible Values

Balances RU
Consumption

Point Reads Become
Easier

Partition key will become
unique identifier

Should have an equality
filter with the item Id

Stored Procedures/Triggers
Cannot Run Across
Multiple Partitions

Presenter
Presentation Notes
Some things to consider when selecting the item Id as the partition key include:If the Item Id is the partition key, it will become a unique identifier throughout your entire containerIf you have a read-heavy container that has a lot of physical partitions, queries will be more efficient if they have an equality filter with the item Id.You cannot run stored procedures or triggers across multiple logical partitions

Provisioning – The Basics

Database
Provisioning

Presenter
Presentation Notes
Set Throughput on a DatabaseWhen you provision throughput on an Azure Cosmos database, the throughput is shared across all the containers in the database.Sharing the database-level provisioned throughput among its containers is analogous to hosting a database on a cluster of machines. Because all containers within a database share the resources available on a machine, you naturally do not get predictable performance on any specific container.Because all containers within the database share the provisioned throughput, Azure Cosmos DB does not provide any predictable throuhgpout guarantees for a particular container in that database. The portion of the throughput that a specific container can receive is dependent on:The number of containersThe choice of partition keys for various containersThe distribution of the workload across various logical partitions of the containersContainers in a shared throughput database share the throughput allocated to that database. You can have up to four containers with a minimum of 400 RU/s on the database. With standard (manual provisioned throughput, each new container after the first four will require an additional 100 RU/s minimum.Maximum of 25 containers in a shared throughput database, which better enables throughput sharing across the containers. After the first 25 containers, you can add more containers to the database only if they are provisioned with dedicated throughput, which is separate from the shared throughput of the database.With autoscale provisioned throughput, you can have up to 25 containers in a database with autoscale max 4000 RU/s (scales between 400 – 4000 RU/s).

Provisioning – The Basics

Database
Provisioning

Database Provisioning

Presenter
Presentation Notes
This image shows how a physical partition can host one or more logical partitions that belong to different containers within a database..

Provisioning – The Basics

Database
Provisioning

Container
Provisioning

Presenter
Presentation Notes
Set throughput on a containerThe throughput provisioned on an Azure Cosmos container is exclusively reserved for that container. The container receives the provisioned throughput all the time.The throughput provisioned for a container is evenly distributed among its physical partitions, and assuming a good partition key that distributes the logical partitions evenly among the physical partitions, the throughput is also distributed evenly across all the logical partitions of the container.You cannot selectively specify the throughput for logical partitions. Because one or more logical partitions of a container are hosted by a physical partition, the physical partitions belong exclusively to the container and support the throughput provisioned on the container.Microsoft recommends that you configure throughput at the container granularity when you want predictable performance for the container.

Provisioning – The Basics

Database
Provisioning

Container
Provisioning

Container Provisioning

Presenter
Presentation Notes
This image shows how a physical partition hosts one or more logical partitions of a container.

Provisioning – The Basics

Database
Provisioning

Container
Provisioning

Combination

Presenter
Presentation Notes
Set throughput on a database and a containerYou can combine the two models. Provisioning throughput on both the database and the container is allowed.

Provisioning – Autoscale

Presenter
Presentation Notes
In Azure Cosmos DB, you can configure either standard (manual) or autoscale provisioned throughput on your database and containers. Autoscale provisioned throughput allows you to scale the throughput of your database or container automatically and instantly. The throughput is scaled based on the usage, without impacting the availability, latency, throughput, or performance of the workload.Autoscale provisioned throughput is well suited for mission-critical workloads that have variable or unpredictable traffic patterns, and require SLAs on high performance and scale.Minimum threshold is 10% of the maximum threshold.Entry point for autoscale maximum throughput starts at 4000 RU/sBecause scaling is automatic and instantaneous, at any point in time, you can consume up to the provisioned max with no delay

Provisioning – Autoscale Benefits

Simple

Presenter
Presentation Notes
Simple: Autoscale removes the complexity of managing RU/s with custom scripting or manually scaling capacity.

Provisioning – Autoscale Benefits

Simple Scalable

Presenter
Presentation Notes
Scalable: Databases and containers automatically scale the provisioned throughput as needed. There is no distribution to client connections, applications, or impact to Azure Cosmos DB SLAs.

Provisioning – Autoscale Benefits

Simple Scalable

Cost-Effective

Presenter
Presentation Notes
Cost-effective: Autocale helps optimize your RU/s usage and cost usage by scaling down when not in use. You only pay for the resources that your workloads need on a per-hour basis.Of all hours in a month, if you set autoscale max RU/s and use the full amount for 66% of the hours or less, you’ll save with autoscale.

Provisioning – Autoscale Benefits

Simple Scalable

Cost-Effective Highly
Available

Presenter
Presentation Notes
Highly Available: Databases and containers using autoscale use the same globally distributed, fault-tolerant, highly available Azure Cosmos DB backend to ensure data durability and high availability.

Provisioning – Autoscale Use Cases

Variable/Unpredictable
Workloads

Presenter
Presentation Notes
Variable or unpredictable workloads: When your workloads have variable or unpredictable spikes in usage, autoscale helps by automatically scaling up and down based on usage.Retail websites that have different traffic patterns depending on seasonalityIOT workloads that have spikes at various times during the dayLine of business applications that see peek usage a few times a month or yearWith autoscale, you no longer need to manually provision for peak or average capacity.

Provisioning – Autoscale Use Cases

Variable/Unpredictable
Workloads New Applications

Presenter
Presentation Notes
New applications: If you are developing a new application and now sure about the throughput you need, autoscale makes it easy to get started. You can start with autoscale entry point of 400 – 4000 RU/s, monitor your usage, and determine the right RU/s over time.

Provisioning – Autoscale Use Cases

Variable/Unpredictable
Workloads New Applications

Infrequently Used
Applications

Presenter
Presentation Notes
Infrequently used applications: If you have an application that is only used for a few hours several times a day, week, or month – such as a low-volume application/web/blog site – autoscale adjusts the capacity to handle peak usage and scales down when it’s over.

Provisioning – Autoscale Use Cases

Variable/Unpredictable
Workloads New Applications

Infrequently Used
Applications

Development and Test
Workloads

Presenter
Presentation Notes
Development and test workloads: If you or your team uses Azure Cosmos databases and containers during work hours, but do not need them on nights or weekends, autoscale helps save cost by scaling down to a minimum when not in use.

Provisioning – Autoscale Use Cases

Variable/Unpredictable
Workloads New Applications

Infrequently Used
Applications

Development and Test
Workloads

Scheduled Production
Workloads/Queries

Presenter
Presentation Notes
Scheduled production workloads/queries: If you have a series of scheduled requests, operations, or queries that you want to run during idle periods, you can do that easily with autoscale. When you need to run the workloads, the throughput will automatically scale to what is needed and scale down afterward.

Provisioning – Autoscale Use Cases

Variable/Unpredictable
Workloads New Applications

Infrequently Used
Applications

Development and Test
Workloads

Scheduled Production
Workloads/Queries

Presenter
Presentation Notes
Building a custom solution to these problems not only requires an enormous amount of time, but also introduces complexity in your application’s configuration or code. Autoscale enable these scenarios out of the box and removes the need for custom or manual scaling of capacity.

Provisioning – Autoscale Use Cases

Variable/Unpredictable
Workloads New Applications

Infrequently Used
Applications

Development and Test
Workloads

Scheduled Production
Workloads/Queries

Presenter
Presentation Notes
Let’s look at two of these situations; you could still potentially be charged more than you want/need to beIs there something better – YES (maybe)

Provisioning – Serverless

Provisioned Throughput
Guarantee Based Billing

Presenter
Presentation Notes
In provisioned throughput mode, you have to commit to a certain amount of throughput that is provisioned on your databases and containers. The cost of your database options is then deducted from the number of Request Units available every second. At the end of your billing period, you get billed for the amount of throughput you have provisioned.

Provisioning – Serverless

Provisioned Throughput
Guarantee Based Billing

Serverless Throughput
Consumption Based Billing

Presenter
Presentation Notes
In serverless mode, you do not have to provision any throughput when creating containers in your Azure Cosmos account. At the end of your billing period, you get billed for the number of Request Units that were consumed by your database operations.

Provisioning – Serverless Performance

Availability

Presenter
Presentation Notes
Serverless resources yield specific performance characteristics that are different from what provisioned throughput resources deliver. (Once the service goes GA).Availability: The availability of serverless containers will be covered by SLA of 99.9% when Availability Zones are not used. The SLA is 99.99% when Availability Zones are used.

Provisioning – Serverless Performance

Availability Latency

Presenter
Presentation Notes
Latency: The latency of serverless will be covered by a Service Level Objective (SLO) of 10 milliseconds or less for point-reads and 30 milliseconds or less for writes.

Provisioning – Serverless Performance

Availability Latency

Burstability

Presenter
Presentation Notes
Burstability: The Burstability of serverless containers will be covered by a Service Level Objective (SLO) of 95%. This means the maximum Burstability can be attained at least 95% of the time.

Provisioning – Serverless Use Cases

Light Traffic

Presenter
Presentation Notes
Light traffic: Because provisioning capacity in such situations is not required and may be cost-prohibitive

Provisioning – Serverless Use Cases

Light Traffic Moderate
Burstability

Presenter
Presentation Notes
Moderate Burstability: Because serverless containers can deliver up to 5,000 Request Units per second

Provisioning – Serverless Use Cases

Light Traffic Moderate
Burstability

Moderate
Performance

Presenter
Presentation Notes
Moderate Performance: Because serverless containers have specific performance characteristics

Provisioning – Serverless Use Cases

Light Traffic Moderate
Burstability

Moderate
Performance

Presenter
Presentation Notes
For these reasons, Azure Cosmos DB serverless should be considered for the certain types of workloads

Provisioning – Serverless Use Cases

Light Traffic Moderate
Burstability

Moderate
Performance

• Development
• Testing
• Prototyping
• Proof of concept
• Non-critical application with light traffic

Presenter
Presentation Notes
For these reasons, Azure Cosmos DB serverless should be considered for the certain types of workloads:DevelopmentTestingPrototypingProof of conceptNon-critical application with light traffic

Provisioning – Serverless Limitations

Single Region

Presenter
Presentation Notes
Single Region: A serverless account can only run in a single Azure region. It is not possible to add additional Azure regions to a serverless account after you create it.

Provisioning – Serverless Limitations

Single Region Synapse Link
Unavailable

Presenter
Presentation Notes
It is not possible to enable the Synapse Link feature on a serverless account.Azure Synapse Link for Azure Cosmos DB is a cloud-native hybrid transactional and analytical processing (HTAP) capability that enables you to run near real-time analytics over operational data in Azure Cosmos DB.Synapse Link is in preview.

Provisioning – Serverless Limitations

Single Region Synapse Link
Unavailable

Unable to Specify
RU Provisioning

Presenter
Presentation Notes
Provisioning throughput is not required on serverless containers, so the following statements are applicable:You cannot pass any throughput when creating a serverless container and doing so returns an errorYou cannot read or update the throughput on a serverless container and doing so returns an errorYou cannot create a shared throughput database in a serverless account and doing so returns an error

Provisioning – Serverless Limitations

Single Region Synapse Link
Unavailable

Unable to Specify
RU Provisioning

Max of 5,000 RU/s

Presenter
Presentation Notes
Serverless containers can deliver a maximum throughput Burstability of 5,000 Request Unites per second.

Provisioning – Serverless Limitations

Single Region Synapse Link
Unavailable

Unable to Specify
RU Provisioning

Max of 5,000 RU/s Maximum of 50-
Gb Storage

Presenter
Presentation Notes
Serverless containers can store a maximum of 50-Gb of data and indexes.

Provisioning – Serverless Limitations

Single Region Synapse Link
Unavailable

Unable to Specify
RU Provisioning

Max of 5,000 RU/s Maximum of 50-
Gb Storage

Core (SQL) API
Only

Presenter
Presentation Notes
Serverless is currently supported on the Azure Cosmos DB Core (SQL) API only.

Provisioning – Serverless Limitations

Single Region Synapse Link
Unavailable

Unable to Specify
RU Provisioning

Max of 5,000 RU/s Maximum of 50-
Gb Storage

Core (SQL) API
Only

Unable to migrate
to/from

Presenter
Presentation Notes
Migrating existing accounts to/from serverless mode is not currently supported.

Provisioning – Serverless Limitations

Single Region Synapse Link
Unavailable

Unable to Specify
RU Provisioning

Max of 5,000 RU/s Maximum of 50-
Gb Storage

Core (SQL) API
Only

Unable to migrate
to/from

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Best Suited For Mission-critical workloads requiring
predictable performance (and cost)

Small-to-medium non-critical
workloads with light traffic

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Best Suited For Mission-critical workloads requiring
predictable performance (and cost)

Small-to-medium non-critical
workloads with light traffic

Limitations per Account Unlimited Azure regions Limited to one Azure region

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Best Suited For Mission-critical workloads requiring
predictable performance (and cost)

Small-to-medium non-critical
workloads with light traffic

Limitations per Account Unlimited Azure regions Limited to one Azure region

Limitations per Container Unlimited throughput
Unlimited storage

Maximum of 5,000 RU/s
Maximum of 50-Gb Storage

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Best Suited For Mission-critical workloads requiring
predictable performance (and cost)

Small-to-medium non-critical
workloads with light traffic

Limitations per Account Unlimited Azure regions Limited to one Azure region

Limitations per Container Unlimited throughput
Unlimited storage

Maximum of 5,000 RU/s
Maximum of 50-Gb Storage

Availability Guarantee 99.99% to 99.999% 99.9 to 99.99%

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Best Suited For Mission-critical workloads requiring
predictable performance (and cost)

Small-to-medium non-critical
workloads with light traffic

Limitations per Account Unlimited Azure regions Limited to one Azure region

Limitations per Container Unlimited throughput
Unlimited storage

Maximum of 5,000 RU/s
Maximum of 50-Gb Storage

Availability Guarantee 99.99% to 99.999% 99.9 to 99.99%

Latency Guarantee < 10-ms for point-reads and writes
(SLA)

< 10-ms for point-reads and < 30-ms
for writes (SLO)

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Best Suited For Mission-critical workloads requiring
predictable performance (and cost)

Small-to-medium non-critical
workloads with light traffic

Limitations per Account Unlimited Azure regions Limited to one Azure region

Limitations per Container Unlimited throughput
Unlimited storage

Maximum of 5,000 RU/s
Maximum of 50-Gb Storage

Availability Guarantee 99.99% to 99.999% 99.9 to 99.99%

Latency Guarantee < 10-ms for point-reads and writes
(SLA)

< 10-ms for point-reads and < 30-ms
for writes (SLO)

Throughput Guarantee 99.99% (SLA) 95% Burstability (SLO)

Provisioning – Choosing
Criteria Provisioned Serverless

Status Generally Available In Preview

Best Suited For Mission-critical workloads requiring
predictable performance (and cost)

Small-to-medium non-critical
workloads with light traffic

Limitations per Account Unlimited Azure regions Limited to one Azure region

Limitations per Container Unlimited throughput
Unlimited storage

Maximum of 5,000 RU/s
Maximum of 50-Gb Storage

Availability Guarantee 99.99% to 99.999% 99.9 to 99.99%

Latency Guarantee < 10-ms for point-reads and writes
(SLA)

< 10-ms for point-reads and < 30-ms
for writes (SLO)

Throughput Guarantee 99.99% (SLA) 95% Burstability (SLO)

Billing Model Per-hour basis for RU/s provisioned,
regardless of how many RUs
consumed

Per-hour bases for the amount of RUs
consumed by your database
operations

Provisioning – Choosing

Burstability Expected
Consumption

Presenter
Presentation Notes
Might not be as clear as you want; some things to consider:Your workload’s burstability requirement, that is what is the maximum amount of RUs you may need to consume in one secondYour overall expected consumption, that is what is the total number of RUs you may consume over a monthLet’s look at some costing examples

Provisioning – Choosing

Burstability Expected
Consumption

Presenter
Presentation Notes
Might not be as clear as you want; some things to consider:Your workload’s burstability requirement, that is what is the maximum amount of RUs you may need to consume in one secondYour overall expected consumption, that is what is the total number of RUs you may consume over a monthLet’s look at some costing examples

Provisioning – Choosing

Burstability Expected
Consumption

Workload expected to burst to a maximum of 500 RU/s and
consume a total of 20,000,000 RUs over a month

Provisioned Serverless
$29.20 $5.00

Presenter
Presentation Notes
Example 1: A workload is expected to burst to a maximum of 500 RU/s and consume a total of 20,000,000 RUs over a month.In provisioned throughput mode, you would provision a container with 500 RU/s for a monthly cost of $0.008 * 5 * 730 = $29.20In serverless mode, you would pay for the consumed RUs: $0.25 * 20 = $5.00

Provisioning – Choosing

Burstability Expected
Consumption

Workload is expected to burst to a maximum 500 RU/s and
consume a total of 250,000,000 RUs over a month.

Provisioned Serverless
$29.20 $62.50

Presenter
Presentation Notes
Example 1: A workload is expected to burst to a maximum of 500 RU/s and consume a total of 250,000,000 RUs over a month.In provisioned throughput mode, you would provision a container with 500 RU/s for a monthly cost of $0.008 * 5 * 730 = $29.20In serverless mode, you would pay for the consumed RUs: $0.25 * 250 = $62.50

Consistency Levels – Strong

Presenter
Presentation Notes
Strong consistency offers a linearizability guarantee. Linearizability refers to serving requests concurrently. The reads are guaranteed to return the most recent committed version of an item. A client never sees an uncommitted or partial write. Users are always guaranteed to read the latest committed write.This graphic illustrates the strong consistency with musical notes. After the data is written to the “West US 2” region, when you read the data from other regions, you get the most recent value..

Consistency Levels – Bounded Staleness

Presenter
Presentation Notes
Bounded stateless: The reads are guaranteed to honor the consistent-prefix guarantee. The reads might lag behind writes by at most “K” versions of an item or by “T” time interval, whichever is reached first.For a single region account, the minimum value of K and T is 10 write operations or 5 seconds. For multi-region accounts the minimum value of K and T is 100,000 write operations or 300 seconds.Inside the staleness window, Bounded Staleness provides the following consistency guarantees:Consistency for clients in the region for an account with single write region = StrongConsistency for clients in different regions for an account with single write region = StrongConsistency for clients writing to a single region for an account for an account with multiple write regions = Consistent PrefixConsistency for clients writing to different regions for an account with multiple write regions = EventualBounded staleness if frequently chosen by globally distributed applications that expect low write latencies but require total global order guarantee. Bounded staleness is great for applications featuring group collaboration and sharing, stock ticker, publish-subscribe/queueing etc.This graphic illustrates the bounded staleness consistency with musical notes. After the data is written to the “West US 2” region, the “East US 2” and “Australia East” regions read the written value based on the configured maximum lag time or the maximum operations.

Consistency Levels – Session

Presenter
Presentation Notes
Session consistency is the most widely used consistency level for both single region as well as globally distributed applications. It provides write latencies, availability, and read throughput comparable to that of eventual consistency but also provides the consistency guarantees that suit the needs of applications written to operate in the context of a user.This graphic illustrates the session consistency with musical notes. The “West US 2” writer and the “West US 2” reader are using the same session (Session A) so they both read the same data at the time. Whereas the “Australia East” region is using “Session B” so, it receives data later but in the same order as the writes.

Consistency Levels – Consistent Prefix

Presenter
Presentation Notes
Consistent prefix: Updates that are returned contain some prefix of all the updates, with no gaps. Consistent prefix consistency level guarantees that reads neve see out-of-order writes.If writes were performed in the order A/B/C, then a client sees either A, A/B, or A/B/C but never out-of-order permutations like A/C, B/A/C. Consistent Prefix provides write latencies, availability, and read throughput comparable to that of eventual consistency, but also provides the order guarantees that suit the needs of scenarios where order is important.Consistency guarantees for Consistent Prefix:Consistency for clients in the same region for an account with single write region = Consistent PrefixConsistency for clients in different regions for an account with single write region = Consistent PrefixConsistency for clients writing to a single region for an account with multiple write regions = Consistent PrefixConsistency for clients writing to multiple regions for an account with multiple write region = EventualThe graphic illustrates the consistency prefix consistency with musical notes. In all regions, the reads neve see out of order writes.

Consistency Levels – Eventual

Presenter
Presentation Notes
Eventual: There is no ordering guarantee for reads. In the absence of any further writes, the replicas eventually converge.Eventual consistency is the weakest form of consistency because a client may read the values that are older than the ones it had read before. Eventual consistency is ideal where the application does not require any ordering guarantees. Examples include count of Retweet, Likes, or non-thread comments.The graphic illustrates the eventual consistency with musical notes.

Consistency Guarantees in Practice

Presenter
Presentation Notes
In practice, you may often get stronger consistency guarantees. Consistency guarantees for a read operation correspond to the freshness and ordering of the database state that you request.If there are no write operations on the database, a read operation with eventual, session, or consistent prefix consistency level is likely to yield the same results as a read operation with strong consistency level.If your Azure Cosmos account is configured with a consistency level other than the strong consistency, you can find out the probability that your clients may get strong and consistent reads for your workloads by looking at the Probabilistically Bounded Staleness (PBS) metric.Probabilistic bounded staleness shows how eventual is your eventual consistency. This metric provides an insight into how often your can get a stronger consistency than the consistency level that you have currently configured on your Azure Cosmos account. In other words, you can see the probablility (measured in milliseconds) of getting strongly consistent reads for a combination of write and read regions.

Service Quotas – Provisioned Throughput
Resource Default Limit
Maximum RUs per container 1,000,000 (by default)
Maximum RUs per database 1,000,000 (by default)
Maximum RUs per (logical) partition 10,000
Maximum storage across all items per
(logical) partition

20-Gb

Maximum number of distinct (logical)
partition keys

Unlimited

Maximum storage per container Unlimited
Maximum storage per database Unlimited
Minimum RU/s required pre 1-Gb 10 RU/s

Presenter
Presentation Notes
A Cosmos container (or shared throughput database) must have a minimum throughput of 400 RU/s. As the containers grows, the minimum supported throughput also depends on the following factors:The maximum throughput ever provisioned on the container. For example, if your throughput was increased to 50,000-RU/s, then the lowest possible provisioned throughput would be 500 RU/s.The current storage in GB in the container. For example, if your container has 100-Gb of storage, then the lowest possible provisioned throughput would be 1000 RU/s.The minimum throughput on a shared throughput database also depends on the total number of containers that you have ever created in a shared throughput database, measured at 100 RU/s per container. For example, if you have created five containers within a shared throughput database, then the throughput must be at least 500 RU/s.

Service Quotas – Serverless
Resource Default Limit
Maximum RU/s per container 5,000
Maximum RU/s per (logical) partition 5,000
Maximum storage across all items per
(logical) partition

20-Gb

Maximum number of distinct (logical)
partition keys

Unlimited

Maximum storage per container 50-Gb

Service Quotas – Per-Account Limits
Resource Provisioned Throughput Serverless
Maximum number of
databases

Unlimited Unlimited

Maximum number of
containers

Unlimited per account
25 per database

100 per account

Maximum number of
regions

No limit (All Azure
regions)

1 (Any Azure region)

Service Quotas – Per-Item Limits
Resource Default Limit
Maximum size of an item 2-MB
Maximum length of partition key value 2048 bytes
Maximum length of ID value 1023 bytes
Maximum number of properties per item No practical limit
Maximum length of property name No practical limit
Maximum length of property value No practical limit
Maximum length of string property value No practical limit

Service Quotas – Per-Request Limits
Resource Default Limit
Maximum execution time for single
operation

5 Seconds

Maximum request size 2-Mb
Maximum response size 4-Mb
Maximum number of operations in a
transaction batch

100

Presenter
Presentation Notes
Maximum execution time for a single operation (like a stored procedure execution or single query page retrieval)Maximum request size (for example, stored procedure, CRUD)Maximum response size (for example, paginated query)

Service Quotas – Try Cosmos DB Free Limits
Resource Default Limit
Duration of the trial 30 days
Maximum containers per subscription 1 (SQL, Gremlin, Table)

3 (MongoDB)
Maximum throughput per container 5,000
Maximum throughput shared-
throughput database

20,000

Maximum total storage per account 10-Gb

Presenter
Presentation Notes
Duration: 30-days (a new trial can be requested after expiration). After expiration, the information stored is deleted.Try Cosmos DB supports global distribution in only the Central US, North Europe, and Southeast Asia regions.

Service Quotas – Free Tier Account Limits
Resource Default Limit
Number of free tier accounts per Azure
subscription

1

Duration of free-tier discount Lifetime of the
account

Maximum RU/s for free 400 RU/s
Maximum storage for free 5-Gb
Maximum number of shared throughput
databases

5

Maximum number of containers in a
shared throughput database

25

Change Feed

Presenter
Presentation Notes
The change feed listens to an Azure Cosmos container for any changes. It then outputs a sorted list of documents that were changed in the order in which they were modified. The changes are persisted, can be processed asynchronously and incrementally, and the output can be distributed across one or more consumers for parallel processing.

Change Feed

Enabled by default

Presenter
Presentation Notes
Change feed is enabled by default for all Azure Cosmos accountsYou use the provisioned throughput to read from the change feed, just like any other Azure Cosmos DB operation, in any of the regions associated with your Azure Cosmos database.

Change Feed

Enabled by default

Change Feed

Enabled by default

Includes insert and
update operations

Presenter
Presentation Notes
The change feed includes inserts and update operations made to items within the container.You can capture deletes by setting a “soft-delete” flag within your documents in place of deletes.Alternatively, you can set a finite expiration period for your items with the TTL capability.

Change Feed

Includes insert and
update operations

Enabled by default

Change Feed

Enabled by default Includes insert and
update operations

Each change
appears exactly

once

Presenter
Presentation Notes
Each change to an item appears exactly once in the change feed

Change Feed

Enabled by default Includes insert and
update operations

Each change
appears exactly

once

Change Feed

Enabled by default Includes insert and
update operations

Clients manage
checkpointing

logic

Each change
appears exactly

once

Presenter
Presentation Notes
And the clients must manage the checkpointing logic.If you want to avoid the complexity of managing checkpoints, the change feed processor provides automatic checkpointing and “at least once” semantics.

Change Feed

Enabled by default Includes insert and
update operations

Clients manage
checkpointing

logic

Each change
appears exactly

once

Change Feed

Enabled by default Includes insert and
update operations

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

Presenter
Presentation Notes
The change feed is sorted by the order of modification within each logical partition

Change Feed

Enabled by default Includes insert and
update operations

Sorted by order of
modification

Each change
appears exactly

once

Clients manage
checkpointing

logic

Change Feed

Enabled by default Includes insert and
update operations

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

No guaranteed
order of logical

partitions

Presenter
Presentation Notes
There is no guaranteed order across the partitions.

Change Feed

Enabled by default Includes insert and
update operations

No guaranteed
order of logical

partitions

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

Change Feed

Enabled by default Includes insert and
update operations

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

Synchronized from
any point-in-time

No guaranteed
order of logical

partitions

Presenter
Presentation Notes
Changes can be synchronized from any point-in-point, that is there is no fixed data retention period for which changes are available.

Change Feed

Enabled by default Includes insert and
update operations

Synchronized from
any point-in-time

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

No guaranteed
order of logical

partitions

Change Feed

Enabled by default Includes insert and
update operations

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

Changes available
in parallel for

logical partitions

No guaranteed
order of logical

partitions

Synchronized from
any point-in-time

Presenter
Presentation Notes
Changes are available in parallel for all logical partition keys of an Azure Cosmos container.This capacity allows changes from large containers to be processed in parallel by multiple consumers.

Change Feed

Enabled by default Includes insert and
update operations

Changes available
in parallel for

logical partitions

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

No guaranteed
order of logical

partitions

Synchronized from
any point-in-time

Change Feed

Enabled by default Includes insert and
update operations

Each change
appears exactly

once

Clients manage
checkpointing

logic

Sorted by order of
modification

Applications can
request multiple

change feeds

No guaranteed
order of logical

partitions

Synchronized from
any point-in-time

Changes available
in parallel for

logical partitions

Presenter
Presentation Notes
Applications can request multiple change feeds on the same container simultaneously.ChangeFeedOptions.StartTime can be used to provide an initial starting point.For example, to find the continuation token corresponding to given clock time. The ContinuationToken, if specified, takes precedence over the StartTime and StartFromBegininning values. The precision of ChangeFeedOptions.StartTime is ~ 5 seconds.

Change Feed Options

Change Feed
Processor Azure Function

	Slide Number 1
	Who is Chad Green
	Slide Number 3
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Slide Number 20
	Elements in an Azure Cosmos DB Account
	Elements in an Azure Cosmos DB Account
	Elements in an Azure Cosmos DB Account
	Elements in an Azure Cosmos DB Account
	Elements in an Azure Cosmos DB Account
	Azure Cosmos DB Architecture
	Slide Number 27
	Slide Number 28
	Request Units (RUs)
	Request Unit Considerations
	Request Unit Considerations
	Request Unit Considerations
	Request Unit Considerations
	Request Unit Considerations
	Request Unit Considerations
	Request Unit Considerations
	Request Unit Considerations
	Estimate RU Costs
	Operational RU Costs
	Slide Number 40
	Partitioning
	Partitioning
	Choosing a partition key
	Choosing a partition key
	Choosing a partition key
	Choosing a partition key
	Using Item Id as the Partition Key
	Using Item Id as the Partition Key
	Slide Number 49
	Provisioning – The Basics
	Provisioning – The Basics
	Provisioning – The Basics
	Provisioning – The Basics
	Provisioning – The Basics
	Provisioning – Autoscale
	Provisioning – Autoscale Benefits
	Provisioning – Autoscale Benefits
	Provisioning – Autoscale Benefits
	Provisioning – Autoscale Benefits
	Provisioning – Autoscale Use Cases
	Provisioning – Autoscale Use Cases
	Provisioning – Autoscale Use Cases
	Provisioning – Autoscale Use Cases
	Provisioning – Autoscale Use Cases
	Provisioning – Autoscale Use Cases
	Provisioning – Autoscale Use Cases
	Provisioning – Serverless
	Provisioning – Serverless
	Provisioning – Serverless Performance
	Provisioning – Serverless Performance
	Provisioning – Serverless Performance
	Provisioning – Serverless Use Cases
	Provisioning – Serverless Use Cases
	Provisioning – Serverless Use Cases
	Provisioning – Serverless Use Cases
	Provisioning – Serverless Use Cases
	Provisioning – Serverless Limitations
	Provisioning – Serverless Limitations
	Provisioning – Serverless Limitations
	Provisioning – Serverless Limitations
	Provisioning – Serverless Limitations
	Provisioning – Serverless Limitations
	Provisioning – Serverless Limitations
	Provisioning – Serverless Limitations
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Provisioning – Choosing
	Slide Number 97
	Consistency Levels – Strong
	Consistency Levels – Bounded Staleness
	Consistency Levels – Session
	Consistency Levels – Consistent Prefix
	Consistency Levels – Eventual
	Consistency Guarantees in Practice
	Slide Number 104
	Service Quotas – Provisioned Throughput
	Service Quotas – Serverless
	Service Quotas – Per-Account Limits
	Service Quotas – Per-Item Limits
	Service Quotas – Per-Request Limits
	Service Quotas – Try Cosmos DB Free Limits
	Service Quotas – Free Tier Account Limits
	Slide Number 112
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed
	Change Feed Options
	Slide Number 132
	Slide Number 133

