

David Bowie - Changes
Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Time may change me

But I can’t trace time

I said that time may change me

But I can’t trace time

Presenter
Presentation Notes
David Bowie might not be able to trace how time changes him, but the Azure Cosmos DB change feed allows us to trace the changes to your data within your Cosmos database. <CLICK>The Azure Cosmos DB change feed listens to an Azure Cosmos container for any changes and then outputs the sorted lists of documents that were changed.

In this session, you learn what the change feed is, how it works, and how you can use it to build more robust applications.

Who is Chad Green

chadgreen@chadgreen.com
TaleLearnCode
ChadGreen.com
ChadGreen & TaleLearnCode
ChadwickEGreen

What is
Cosmos DB
Ch-ch-ch-changes: Tracing

Changes in Azure Cosmos DB

Azure Cosmos DB

A globally distributed,
massively scalable, multi-
model database service

What is Cosmos DB

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Presenter
Presentation Notes
Turnkey Global Distribution
Enables you to build highly responsive and highly available applications worldwide
Transparently replicates your data wherever your users are, so your users can interact with a replica of the data that is closest to them
Add or remove any of the Azure regions to your Cosmos account at any time, with a click of a button
Cosmos DB will seamlessly replicate your data to all the regions associated with your account while your application continues to be highly available, thanks to the multi-homing capabilities

Always On
By virtue of deep integration with Azure infrastructure and transparent multi-master replication, Cosmos DB provides 99.999% high availability for both reads and writes.
Provides you the ability to programmatically or via Portal invoke the regional failover of your Cosmos account
Helps ensure that your application is designed to failover in the case of regional disaster

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Presenter
Presentation Notes
NEXT: Elastic scale out of storage & throughput

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Elastic scale out of
storage & throughput

Turnkey global
distribution

Presenter
Presentation Notes
Elastic scalability of throughput and storage, worldwide
Designed with transparent horizontal partitioning and multi-master replication
Offers unprecedent elastic scalability for your writes and reads, all around the globe
Elastically scale up from thousands to hundreds of millions of requests per second around the global with a single API call and pay only for the throughput (and storage) you need
Helps you deal with unexpected spikes in your workloads without having to over-provision for the peak

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Elastic scale out of
storage & throughput

Turnkey global
distribution

Presenter
Presentation Notes
NEXT: Guaranteed low latency at the 99th percentile

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Guaranteed low latency
at the 99th percentile

Turnkey global
distribution

Elastic scale out
of storage & throughput

Presenter
Presentation Notes
Guaranteed low latency at 99th percentile, worldwide
Using Cosmos DB, you can build highly responsive, planet scale applications
With its novel multi-master replication protocol and latch free and write-optimized database engine, Cosmos guarantees less than 10-ms latencies for both, reads (indexed) and writes at 99th percentile, all around the world
Capability ensures sustained ingestion of data and blazing-fast queries for highly responsive apps

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Guaranteed low latency
at the 99th percentile

Turnkey global
distribution

Elastic scale out
of storage & throughput

Presenter
Presentation Notes
NEXT: Five well-defined consistency models

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Five well-defined
consistency models

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Presenter
Presentation Notes
Strong; Bounded Staleness; Session; Consistent Prefix; Eventual

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Five well-defined
consistency models

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Presenter
Presentation Notes
Strong; Bounded Staleness; Session; Consistent Prefix; Eventual

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Comprehensive
SLAs

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Presenter
Presentation Notes
Industry Leading Comprehensive SLAs
First and only service to offer industry-leading comprehensive SLAs encompassing 5-nine availability, read and write latency at the 99th percentile, guaranteed throughput, and consistency.

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Comprehensive
SLAs

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Battle Tested

Presenter
Presentation Notes
Battle tested database service
Cosmos DB is a foundational service in Azure
For nearly a decade, Cosmos DB has been used by many of Microsoft’s products for mission critical applications at global scale
Skype, Xbox, Office 365, Azure, and many others
One of the fastest growing services on Azure

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Battle Tested

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Ubiquitous Regional Presence

Presenter
Presentation Notes
Ubiquitous regional presence
Azure public cloud
Azure China 21Vianet (one of China’s largest internet providers)
Azure Germany (data remains in country)
Azure Government (4 regions)
Azure Government for Department of Defense (2 regions)

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAS

Secure by default and
enterprise ready

Presenter
Presentation Notes
Secure by default and enterprise ready
Certified for a wide array of compliance standards
CSA STAR Certification\CSA STAR Attestation
ISO 20000-1:2011, 22301:2012, 27001:2013, 27017:2015, 27018:2014
SOC 1,2,3
DoD SRP Level 2
FedRAMP Moderate
GxP
HIPPA
HITRUST
PCI DSS
Australian IREP Unclassifed
Germany C5
Singapore MTCS Level 3
Spain ENS High
Encrypted at rest and in motion
Provides row level authorization and adheres to strict security standards

Azure Cosmos DB
A globally distributed, massively scalable, multi-model database service

Turnkey global
distribution

Elastic scale out
of storage & throughput

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

Comprehensive
SLAs

MongoDBTable API

Core
(SQL)
API

DocumentColumn-family
Key-value Graph

Change
Feed

Ch-ch-ch-changes: Tracing
Changes in Azure Cosmos DB

Overview
Change Feed

Presenter
Presentation Notes
The change feed listens to an Azure Cosmos container for any changes. It then outputs a sorted list of documents that were changed in the order in which they were modified. The changes are persisted, can be processed asynchronously and incrementally, and the output can be distributed across one or more consumers for parallel processing.

Overview
Change Feed

Presenter
Presentation Notes
NEXT: Unsung Hero of Azure Cosmos DB

Overview
Change Feed

Unsung Hero of
Azure Cosmos DB

Overview
Change Feed

Enabled by
default

Presenter
Presentation Notes
Change feed is enabled by default for all Azure Cosmos accounts

You use the provisioned throughput to read from the change feed, just like any other Azure Cosmos DB operation, in any of the regions associated with your Azure Cosmos database.

Overview
Change Feed

Enabled by
default

Enabled by default

Overview
Change Feed

Includes insert
and update
operations

Enabled by default

Presenter
Presentation Notes
The change feed includes inserts and update operations made to items within the container.

You can capture deletes by setting a “soft-delete” flag within your documents in place of deletes.

Alternatively, you can set a finite expiration period for your items with the TTL capability.

Includes insert and update
operations

Overview
Change Feed

Includes insert
and update
operations

Enabled by default

Includes insert and update
operations

Overview
Change Feed

Each change
appears exactly

once

Enabled by default

Presenter
Presentation Notes
Each change to an item appears exactly once in the change feed

Includes insert and update
operations

Overview
Change Feed

Each change
appears exactly

once

Enabled by default Each change appears
exactly once

Presenter
Presentation Notes
Each change appears exactly once

Includes insert and update
operations

Overview
Change Feed

Clients manage
checkpointing

logic

Enabled by default Each change appears
exactly once

Presenter
Presentation Notes
And the clients must manage the checkpointing logic.

If you want to avoid the complexity of managing checkpoints, the change feed processor provides automatic checkpointing and “at least once” semantics.

Includes insert and update
operations

Overview
Change Feed

Clients manage
checkpointing

logic

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Presenter
Presentation Notes
Clients manage checkpointing logic

Includes insert and update
operations

Overview
Change Feed

Sorted by order
of modification

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Presenter
Presentation Notes
The change feed is sorted by the order of modification within each logical partition

Includes insert and update
operations

Overview
Change Feed

Sorted by order
of modification

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

Presenter
Presentation Notes
Sorted by order of modification

Includes insert and update
operations

Overview
Change Feed

No guaranteed
order logical

partitions

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

Presenter
Presentation Notes
There is no guaranteed order across the partitions.

Includes insert and update
operations

Overview
Change Feed

No guaranteed
order logical

partitions

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

No guaranteed order
logical partitions

Presenter
Presentation Notes
No guaranteed order across logical partitions

Includes insert and update
operations

Overview
Change Feed

Synchronized
from any point-

in-time

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

No guaranteed order
logical partitions

Presenter
Presentation Notes
Changes can be synchronized from any point-in-point, that is there is no fixed data retention period for which changes are available.

Synchronized from any
point-in-time

Includes insert and update
operations

Overview
Change Feed

Synchronized
from any point-

in-time

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

No guaranteed order
logical partitions

Presenter
Presentation Notes
Synchronized from any point-in-time

Includes insert and update
operations

Overview
Change Feed

Changes available
in parallel for

logical partitions

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

No guaranteed order
logical partitions

Synchronized from any
point-in-time

Presenter
Presentation Notes
Changes are available in parallel for all logical partition keys of an Azure Cosmos container.

This capacity allows changes from large containers to be processed in parallel by multiple consumers.

Changes available in
parallel for logical

partitions

Synchronized from any
point-in-time

Includes insert and update
operations

Overview
Change Feed

Changes available
in parallel for

logical partitions

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

No guaranteed order
logical partitions

Presenter
Presentation Notes
Changes available in parallel for logical partitions

Includes insert and update
operations

Overview
Change Feed

Applications can
request multiple

change feeds

Enabled by default Each change appears
exactly once

Clients manage
checkpointing logic

Sorted by order of
modification

No guaranteed order
logical partitions

Synchronized from any
point-in-time

Changes available in
parallel for logical

partitions

Presenter
Presentation Notes
Applications can request multiple change feeds on the same container simultaneously.

ChangeFeedOptions.StartTime can be used to provide an initial starting point.

For example, to find the continuation token corresponding to given clock time. The ContinuationToken, if specified, takes precedence over the StartTime and StartFromBegininning values. The precision of ChangeFeedOptions.StartTime is ~ 5 seconds.

Supported APIs and Client SDKs
Change Feed

X

Presenter
Presentation Notes
The change feed is currently supported by:

SQL API
Cassandra
MongoDB
Gremlin API

Not supported by the Table API

Drivers are available for:

.NET
Java
Python
Node/JS

Supported APIs and Client SDKs
Change Feed

Presenter
Presentation Notes
Change feed functionality is surfaced as change stream in MongoDB API and Query with predicate in Cassandra API.

Native Apache Cassandra provides change data capture (CDC), a mechanism to flag specific tables for archival as well as rejecting writes to those tables once a configurable size-on-disk for the CDC log is reached. The change feed feature in Azure Cosmos DB API for Cassandra enhances the ability to query the changes with predicate via CQL.

Current Limitations
Change Feed

Intermediate
Updates

Presenter
Presentation Notes
Only the most recent change for a given item is included in the change feed. When processing changes, you will read the latest available item version. If there are multiple updates to the same item in a short period of time, it is possible to missing processing intermediate updates. If you would like to track updates and be able to replay past updates to an item, we recommend modeling these updates as a series of writes instead.

Current Limitations
Change Feed

Intermediate
Updates

Presenter
Presentation Notes
NEXT: Guaranteed order

Current Limitations
Change Feed

Guaranteed
Order

Intermediate
Updates

Presenter
Presentation Notes
There is guaranteed order in the change feed within a partition key but not across partition key values. You should select a partition key that gives you a meaningful order guarantee.

For example, consider a retail application using the event sourcing design pattern. In this application, different user actions are each “events” which are modeled as writes to Azure Cosmos DB. Imagine if some example events occurred in the following sequence:

Customer adds Item A to their shopping cart
Customer adds Item B to their shopping cart
Customer removes Item A from their shopping cart
Customer checks out and shopping cart contents are shipped

A materialized view of current shopping caret contents is maintained for each customer. This application must ensure that these events are processed in the order in which they occur. If, for example, the cart checkout were to be processed before Item A’s removal, it is likely that the customer would have Item A shipped, as opposed to the desired Item B. In order to guarantee that these four events are processed in order of their occurrence, they should fail within the same partition key value. If you select username (each customer has a unique username) as the partition key, you can guarantee that these events show up in the change feed in the same order in which they are written to Azure Cosmos DB.

Current Limitations
Change Feed

Guaranteed
Order

Intermediate
Updates

Presenter
Presentation Notes
NEXT: Deletes

Current Limitations
Change Feed

DeletesIntermediate
Updates

Guaranteed
Order

Presenter
Presentation Notes
The change feed does not capture deletes. If you delete an item from your container, it is also removed from the change feed. The most common method of handling this is adding a soft marker on the items that are being deleted. You can add a property called “deleted” and set it to “true” at the time of deletion. This document update will show up in the change feed. You can set a TTL on this item so that it can be automatically deleted leter.

Change
Feed

Processor
Ch-ch-ch-changes: Tracing

Changes in Azure Cosmos DB

Presenter
Presentation Notes
You can read from the change feed directly with the SDK; but let’s look at the change feed processor

The change feed processor simplifies the process of reading the change feed and distribute the event processing across multiple consumers effectively.

The main benefit of the change feed processor library is its fault-tolerant behavior that assures an “at-least-once” delivery of all the events in the change feed.

Change Feed Processor Components
Reading the Change Feed

Monitored Container

Presenter
Presentation Notes
There are four main components of implementing the change feed processor:

1. The monitored container: The monitored container has the data from which the change feed is generated. Any inserts and updates to the monitored container are reflected in the change feed of the container.

Change Feed Processor Components
Reading the Change Feed

Leased ContainerMonitored Container

Presenter
Presentation Notes
The lease container: The lease container acts as a state storage and coordinates processing the change feed across multiple workers. The lease container can be stored in the same account as the monitored container or in a separate account.

Change Feed Processor Components
Reading the Change Feed

Leased ContainerMonitored Container

Host

Presenter
Presentation Notes
The host: A host in an application instance that uses the change feed processor to listen for changes. Multiple instances with the same lease configuration can run in parallel, but each instance should have a different instance name.

Change Feed Processor Components
Reading the Change Feed

Leased ContainerMonitored Container

Host Delegate

Presenter
Presentation Notes
The delegate: The delegate is the code that defines what you, the developer, what to do with each batch of changes that the change feed processor reads.

Change Feed Processor Components
Reading the Change Feed

Presenter
Presentation Notes
To further understand how these four elements of change feed processor work together, let's look at an example in the following diagram. The monitored container stores documents and uses 'City' as the partition key. We see that the partition key values are distributed in ranges that contain items. There are two host instances and the change feed processor is assigning different ranges of partition key values to each instance to maximize compute distribution. Each range is being read in parallel and its progress is maintained separately from other ranges in the lease container.

Processing Life Cycle
Reading the Change Feed

Read the change feed

Changes

Send changes to delegate

Update lease store

Yes

No

Presenter
Presentation Notes
The normal life cycle of a host instance is:

<CLICK> Read the change feed.
<CLICK> If there are no changes, <CLICK> sleep for a predefined amount of time and go to #1
<CLICK> If there are changes, send them to the delegate.
When the delegate finished processing the changes successfully, <CLICK> update the lease store with the latest processed point in time and <CLICK> go to #1.

Hosting the Change Feed Processor
Reading the Change Feed

Azure Virtual
MachineAzure WebJob

Azure Kubernetes
Service

ASP.NET Hosted
Service

Presenter
Presentation Notes
The change feed processor can be hosted in any platform that supports long processes or tasks:

A continuous running Azure WebJob.
A process in an Azure Virtual Machine.
A background job in Azure Kubernetes Service.
An ASP.NET hosted service

Serverless
Event-Based
Architectures

Ch-ch-ch-changes: Tracing
Changes in Azure Cosmos DB

Presenter
Presentation Notes
Azure Functions provides the simplest way to connect to the change feed. You can create small reactive Azure Functions that will be automatically triggered on each new event in your Azure Cosmos container’s change feed.

Azure Functions
Serverless Event-Based Archictures

Presenter
Presentation Notes
Code
Events and Data

Azure Functions
Serverless Event-Based Architectures

Serverless

Presenter
Presentation Notes
Serverless applications: Functions allow you to develop serverless applications on Microsoft Azure.

Azure Functions
Serverless Event-Based Architectures

Serverless Language Choice

Presenter
Presentation Notes
Choice of language: Write functions using your choice of C#, Java, JavaScript, Python, and PowerShell.

Azure Functions
Serverless Event-Based Architectures

Serverless Language Choice Pay-Per-Use

Presenter
Presentation Notes
Pay-per-use pricing model: Pay only for the time spent running your code.

Azure Functions
Serverless Event-Based Architectures

Serverless Language Choice Pay-Per-Use

BYOD

Presenter
Presentation Notes
Bring your own dependencies: Functions support NuGet and NPM, giving you access to your favorite libraries.

Azure Functions
Serverless Event-Based Architectures

Serverless Language Choice Pay-Per-Use

BYOD Security

Presenter
Presentation Notes
Integrated security: Protect HTTP-triggered functions with Oauth providers such as Azure Active Directory, Facebook, Google, Twitter, and Microsoft Account.

Azure Functions
Serverless Event-Based Architectures

Serverless Language Choice Pay-Per-Use

BYOD Security Integration

Presenter
Presentation Notes
Simplified integration: Easily integrate with Azure services and software-as-a-service (SaaS) offerings.

Azure Functions
Serverless Event-Based Architectures

Serverless Language Choice Pay-Per-Use

BYOD Security Integration

Flexible Dev

Presenter
Presentation Notes
Flexible development: Set up continuous integration and deploy your code through GitHub, Azure DevOps Services, and other supported development tools.

Azure Functions
Serverless Event-Based Architectures

Serverless Language Choice Pay-Per-Use

BYOD Security Integration

Flexible Dev Stateful

Presenter
Presentation Notes
Stateful serverless architecture: Orchestrate serverless applications with Durable Functions.

Azure Functions Features
Serverless Event-Based Architectures

Serverless Language Choice Pay-Per-Use

BYOD Security Integration

Flexible Dev Stateful Open-Source

Presenter
Presentation Notes
Open-source: The Functions runtime is open-source and available on GitHub.

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP

Presenter
Presentation Notes
HTTP: Run code based on HTTP requests

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer

Presenter
Presentation Notes
Timer: Schedule code to run at predefined times

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer Blob storage

Presenter
Presentation Notes
Blob storage: Process new and modified Azure Storage blobs

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer Blob storage

Queue storage

Presenter
Presentation Notes
Queue storage: Respond to Azure Storage queue message

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer Blob storage

Queue storage Event Grid

Presenter
Presentation Notes
Event Grid: Respond to Azure Event Grid events via subscriptions and filters

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer Blob storage

Queue storage Event Grid Event Hub

Presenter
Presentation Notes
Event Hub: Respond to high-volumes of Azure Event Hub events

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer Blob storage

Queue storage Event Grid Event Hub

Service Bus Queue

Presenter
Presentation Notes
Service Bus Queue: Connect to other Azure or on-premises services by responding Service Bus queue messages

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer Blob storage

Queue storage Event Grid Event Hub

Service Bus Queue Service Bus Topic

Presenter
Presentation Notes
Service Bus Topic: Connect other Azure services or on-premises services by responding to Service Bus topic messages

What can you do with Azure Functions?
Serverless Event-Based Architectures

HTTP Timer Blob storage

Queue storage Event Grid Event Hub

Service Bus Queue Service Bus Topic Cosmos DB

Presenter
Presentation Notes
Azure Cosmos DB: Process new and modified Azure Cosmos DB documents

Azure Cosmos DB and Azure Functions
Serverless Event-Based Architectures

Presenter
Presentation Notes
With the Azure Functions trigger for Cosmos DB, you can leverage the Change Feed Processor’s scaling and reliable event detection functionality without the need to maintain any worker infrastructure. Just focus on your Azure Function’s logic without worrying about the rest of the event-sourcing pipeline. You can even mix the Trigger with any other Azure Functions bindings.

NOTE: Currently, the Azure Functions trigger for Cosmos DB is supported for use with the Core (SQL) API only.

Change
Feed Design

Patterns
Ch-ch-ch-changes: Tracing

Changes in Azure Cosmos DB

Presenter
Presentation Notes
Azure Cosmos DB is well-suited for IoT, gaming, retail, and operational logging applications. A common design pattern in these applications is to use changes to the data to trigger additional actions.

A common design pattern in these applications is to use the data to trigger additional actions. Examples of additional actions include:

Triggering a notification or call to an API, when an item is inserted or updated.
Real-time stream processing for IoT or real-time analytics processing on operational data.
Data movement such as synchronizing with a cache, a search engine, a data warehouse, or cold storage.

Common Uses of the Change Feed
Change Feed Design Patterns

Presenter
Presentation Notes
The change feed in Azure Cosmos DB enables you to build efficient and scalable solutions for each of these patterns, as shown here:

NEXT: Event computing and notifications

Common Uses of the Change Feed
Change Feed Design Patterns

Event Computing
and Notifications

Presenter
Presentation Notes
The change feed can simplify scenarios that need to trigger a notification or send a call to an API based on a certain event. You can use the Change Feed Process Library to automatically poll your container for changes and call an external API each time there is a write or update.

You can also selectively trigger a notification or send a call to an API based on specified criteria. For example, if you are reading from the change feed using Azure Functions, you can put logic into the function to only send a notification if a specified criteria has been met. While the Azure Function code would execute during each write and update, the notification would only be sent if specific criteria had been met.

Common Uses of the Change Feed
Change Feed Design Patterns

Event Computing
and Notifications

Real-Time Stream
Processing

Presenter
Presentation Notes
The Azure Cosmos DB change feed can be used for real-time stream processing for IoT or real-time analytics processing on operational data. For example, you might receive and store event data from devices, sensors, infrastructure and applications, and process these events in real time, using Spark.

<CLICK> Here we can see how you can implement a lambda architecture using the Azure Cosmos DB via change feed.

In many cases, stream processing implementations first receive a high volume of incoming data into a temporary message queue such as Azure Event Hub or Apache Kafka. The change feed is a great alternative due to Azure Cosmos DB’s ability to support a sustained high rate of data ingestion with guaranteed low read and write latency. The advantages of the Azure Cosmos DB change feed over a message queue include:

Data persistence
Querying ability
High availability

Common Uses of the Change Feed
Change Feed Design Patterns

Event Computing
and Notifications

Real-Time Stream
Processing

Data Movement

Presenter
Presentation Notes
You can also read from the change feed for real-time data movement.

For example, the change feed helps you perform the following tasks efficiently:

Update a cache, search index, or data warehouse with data stored in Azure Cosmos DB

Perform zero down-time migrations to another Azur Cosmos account or another Azure Cosmos container with a different logical partition key

Implement an application-level data tiering and archival. For example, you can store “hot data” in Azure Cosmos DB and age out “cold data” to other storage systems such as Azure Blob Storage.

When you have to denormalize data across partitions and containers, you can read from your container’s change feed as a source for this data replication. Real-time data replication with the change feed can only guarantee eventual consistency. You can monitor how far the Change Feed Processor lags behind in processing changes in your Cosmos container.

Common Uses of the Change Feed
Change Feed Design Patterns

Event Computing
and Notifications

Real-Time Stream
Processing

Data Movement Event Sourcing

Presenter
Presentation Notes
The event sourcing pattern involves using an append-only store to record the full series of actions on that data. Azure Cosmos DB’s change feed is a great choice as a central store in event sourcing architectures where all data ingestion is modeled as writes (no updates or deletes). In this case, each write to Azure Cosmos DB is an “event” and you will have a full record of past events in the change feed. Typical uses of events published by the central event store are for maintaining materialized views or for integration with external services. Because there is no time limit for retention in the change feed, you can replay all past events by reading from the beginning of your Cosmos container’s change feed.

Azure Cosmos DB is a great central append-only persisted data store in the event sourcing pattern because of its strengths in horizontal scalability and high availability. In addition, the Change Feed Processor Library offers an “at least once” guarantee, ensuring that you will not miss processing any events.

Demos

Ch-ch-ch-changes: Tracing
Changes in Azure Cosmos DB

Basic Change Feed Demo
Change Feed Demos

Data written
to Cosmos DB

Insert/Update
recorded in the

Change Feed

Azure Function is
triggered by the

item being added
to the change feed

Data Archival
Change Feed Demos

Scenario
• Practice test application

• Data is useful for active queries within 30 days (2,592,000 seconds)

• Need to keep archive for historical, compliance reasons

• Demo will process 428k records over 24-hour period

• Real data that has been autonomized

Data Archival
Change Feed Demos

Application/Device
sends data to

Cosmos

Cosmos DB
receives data

The insert is
recorded
into the

change feed

Azure
Function is

triggered by
the item

being added
to the

change feed

The data is
archived in a

cold blob
storage

container

Denormalization
Change Feed Demos

Scenario
• Shindig Manager

• Manages presentations for different shindigs (events)

• Metadata maintained in its own container

• Need way to update denormalized data in shindig (event) partitions

Presenter
Presentation Notes
Could also be used for graph databases where you want to related data keep together in the same container for performant queries

Denormalization
Change Feed Demos

Metadata is updated

Cosmos DB
receives
updated

data

The update is
recorded into

the change
feed

Azure Function
is triggered by
the metadata
being updated
to the change

feed

Affected
documents are

updated/written

Replicating Containers
Change Feed Demos

Scenario
• Shindig Manager

• Manages presentations for different shindigs (events)

• Presentations partitioned by shindig

• Want to improve query performance when searching across
tags (original partitioning would require cross-partition
querying)

Replicating Containers
Change Feed Demos

Presentation data is
sent to Cosmos by

the application

Cosmos DB
receives data

The
insert/update

is recorded
into the

change feed

Azure Function
is triggered by
the item being
added/update

d to the
change feed

Document is
sent to

replicated
Cosmos

container(s)

Triggering Event-Driven Architecture
Change Feed Demos

Scenario
• Shopping cart implementation – Lego store

• Implementing an event-driven architecture to allow for asynchronous
processing of an order

• Note: functions are only simulating doing actions

Triggering Event-Driven Architecture
Change Feed Demos

User purchases one
or more items

Order data is
written to

Cosmos DB

The shopping
cart is recorded
into the change

feed

Fulfillment

Inventory

Notification

Wrap-Up

Ch-ch-ch-changes: Tracing
Changes in Azure Cosmos

Wrap-Up

•Azure Cosmos DB
Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Presenter
Presentation Notes
A globally distributed, massively scalable, multi-model database service

Wrap-Up

•Azure Cosmos DB
•Change feed is the unsung here of Cosmos DB

Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Presenter
Presentation Notes
The change feed is the unsung hero of Azure Cosmos:
Enabled by default
Includes insert and update operations
Sorted by order of modification
Synchronized from any point-in-time
Changes available in parallel for logical partitions
Applications can request multiple change feeds

Wrap-Up

•Azure Cosmos DB
•Change feed is the unsung here of Cosmos DB
•Supported APIs and client SDKs

Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Presenter
Presentation Notes
Supported APIs:
SQL API
Cassandra
Mongo DB
Gremlin API

Supported Client SDKs:
.NET
Java
Python
Node/JS

Wrap-Up

•Azure Cosmos DB
•Change feed is the unsung here of Cosmos DB
•Supported APIs and client SDKs
•Current limitations

• Intermediate Updates
• Guaranteed Order
• Deletes

Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Wrap-Up

•Azure Cosmos DB
•Change feed is the unsung here of Cosmos DB
•Supported APIs and client SDKs
•Current limitations

• Intermediate Updates
• Guaranteed Order
• Deletes

•Three processes for reading the change feed

Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Presenter
Presentation Notes
SDK (Azure WebJobs, Azure Virtual Machine, Azure Kubernetes Service, ASP.NET Hosted Service)
Change Feed Processor
Azure Functions – Only Core (SQL) API only

Wrap-Up

• Azure Cosmos DB
• Change feed is the unsung here of Cosmos DB
• Supported APIs and client SDKs
• Current limitations

• Intermediate Updates
• Guaranteed Order
• Deletes

• Three processes for reading the change feed
• Common patterns

Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Presenter
Presentation Notes
Common patterns:
Event computing and notifications
Real-time stream processing
Data movement
Event Sourcing

Wrap-Up

• Azure Cosmos DB
• Change feed is the unsung here of Cosmos DB
• Supported APIs and client SDKs
• Current limitations

• Intermediate Updates
• Guaranteed Order
• Deletes

• Three processes for reading the change feed
• Common patterns
• Demos

Ch-ch-ch-changes: Tracing Changes in Azure Cosmos DB

Presenter
Presentation Notes
Demos:
Archival
Replicating containers
Denormalizing data
Triggering APIs for event-driven architecture

Thank You!

chadgreen@chadgreen.com
TaleLearnCode
ChadGreen.com
ChadGreen & TaleLearnCode
ChadwickEGreen

	Slide Number 1
	David Bowie - Changes
	Slide Number 3
	What is Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Azure Cosmos DB
	Change Feed
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Supported APIs and Client SDKs
	Supported APIs and Client SDKs
	Current Limitations
	Current Limitations
	Current Limitations
	Current Limitations
	Current Limitations
	Change Feed Processor
	Change Feed Processor Components
	Change Feed Processor Components
	Change Feed Processor Components
	Change Feed Processor Components
	Change Feed Processor Components
	Processing Life Cycle
	Hosting the Change Feed Processor
	Serverless Event-Based Architectures
	Azure Functions
	Azure Functions
	Azure Functions
	Azure Functions
	Azure Functions
	Azure Functions
	Azure Functions
	Azure Functions
	Azure Functions
	Azure Functions Features
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	What can you do with Azure Functions?
	Azure Cosmos DB and Azure Functions
	Change Feed Design Patterns
	Common Uses of the Change Feed
	Common Uses of the Change Feed
	Common Uses of the Change Feed
	Common Uses of the Change Feed
	Common Uses of the Change Feed
	Demos
	Basic Change Feed Demo
	Data Archival
	Data Archival
	Denormalization
	Denormalization
	Replicating Containers
	Replicating Containers
	Triggering Event-Driven Architecture
	Triggering Event-Driven Architecture
	Wrap-Up
	Wrap-Up
	Wrap-Up
	Wrap-Up
	Wrap-Up
	Wrap-Up
	Wrap-Up
	Wrap-Up
	Slide Number 102

