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What are Graph
Databases

G r a p h i n g  Y o u r  W a y  T h r o u g h  t h e  C o s m o s
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What is a Graph

• Discrete mathematics

• Structure amounting to a set of objects in which some pairs of the 

objects are in some sense related

• Objects correspond to mathematical abstractions called vertices and each 

of the related pairs of vertices is called an edge

• Graph Theory is the study of graphs
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What is a Graph

• Depicted in diagrammatic form as a set of dots or circles for the vertices, 

joined by lines or curves for the edges
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What is a Graph
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History of Graph Theory
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History of Graph Theory
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History of Graph Theory

Leonard Euler
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History of Graph Theory
Solutio problematis ad 
geometriam situs 
pertinentis

The solution of a problem 
relating to the geometry 
of position
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Applications of Graph Theory

• Linguistics

• Physics and Chemistry

• Social Sciences

• Biology

• Computer Science



@chadgreen@chadgreen



@chadgreen@chadgreen

What is a Graph

• Collection of vertices and edges

• Represent entities as vertices and the ways in which those entities relate 

to the world as relationships

• Allow us to model all kinds of scenarios
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What is a Graph

@ChadGreen

@AzureCosmosDB@_LBosq

Follows Follows

Follows

Follows

User

User

User
Follows



@chadgreen@chadgreen

What is a Graph Database

A graph database is a database 

that uses graph structures to 

represent and store data.
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What is a Graph Database

• Represents data as it exists in the real world that are naturally connected

• Does not try to change them in any way to define them as entities

• Graphs are composed of vertices and edges

• Vertices represent specific objects

• Edge is a relation between vertices

• Both vertices and edges can have any number of properties
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Property Graph Model

Name: Chad Green
Location: Louisville, KY

Title: Director of 
Software 

Development

Name: ScholarRx
Location:

Elizabethtown, KY
Date of Employment: 2/28/2019

Employee Company

Works For

Contains nodes
(vertices) and 

relationships (edges)

Nodes and relationships 
contain properties

Relationships are named
and directed with a start

and end node
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The Power of Graph Databases

• Performance
• Graph database performance tends to remain relatively constant, 

even as the dataset grows

• Flexibility
• Graph data model better accommodates changing business needs

• Agility
• Equip us to perform frictionless development and graceful system 

maintenance
• Governance is typically applied in a programmatic fashion



@chadgreen@chadgreen

Common Graph Use Cases

• Internet of Things

• Customer 360

• Asset management

• Recommendations

• Fraud detection

• Data Integration

• Identity and access management

• Social networks

• Communication networks

• Genomics

• Epidemiology

• Semantic Web

• Search

• Social networks

• Recommendations

• Communication networks

• Fraud detection

• Search

• Identity and access management
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Graph vs
Relational

G r a p h i n g  Y o u r  W a y  T h r o u g h  t h e  C o s m o s
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Graph Databases vs Relational Databases

Relational

Tables

Schema with nullables

Relations with foreign keys

Related data fetched with joins

Graph

Vertices (Nodes)

No schema

Relation is first class citizen

Related data fetched with a pattern
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Graph Databases vs Relational Databases
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Human Resource Data
Graph Databases vs Relational Databases

EmployeeId EmployeeName EmployeeGroup

1 Willis B. Hawkins Sales

2 Neil S. Vega Sales

3 Ada C. Lavigne Engineering
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Human Resource Data
Graph Databases vs Relational Databases

-- Create the Employee Table
CREATE TABLE Employees
(

EmployeeID INT IDENTITY(1,1),
EmployeeName VARCHAR(64),
EmployeeGroup VARCHAR(32),
CONSTRAINT pkcEmployees PRIMARY KEY CLUSTERED (EmployeeId)

)
GO

-- Populate the Employee Table
INSERT INTO Employees (EmployeeName, EmployeeGroup)

VALUES ('Willis B. Hawkins', 'Sales'),
('Neil S. Vega', 'Sales'),
('Ada C. Lavigne', 'Engineering');

GO
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// Create group nodes
g.addV('group').property('id', 'Sales’)
g.addV('group').property('id', 'Engineering’)

// Create employee nodes
g.addV('employee').property('id', 'Willis B. Hawkins’)
g.addV('employee').property('id', 'Neil S. Vega’)
g.addV('employee').property('id', 'Ada C. Lavigne’)

// Create relationships between groups and employees
g.V('Sales').addE('member').to(g.V('Willis B. Hawkins’))
g.V('Sales').addE('member').to(g.V('Neil S. Vega’))
g.V('Engineering').addE('member').to(g.V('Ada C. Lavignee'))

Human Resource Data
Graph Databases vs Relational Databases



@chadgreen@chadgreen

Human Resource Data
Graph Databases vs Relational Databases

EmployeeId EmployeeName EmployeeGroup

1 Willis B. Hawkins Sales

2 Neil S. Vega Sales

3 Ada C. Lavigne Engineering

3 rows, 3 columns 8 documents (vertices and edges)

Wills B 
Hawkins Neil S. Vega Ada C. 

Lavigne

Sales Engineering

member member member
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Human Resource Data
Graph Databases vs Relational Databases

EmployeeId EmployeeName EmployeeGroup

1 Willis B. Hawkins Sales

2 Neil S. Vega Sales

3 Ada C. Lavigne Engineering

g.V().hasLabel(‘employee’)SELECT * FROM Employees;

Wills B 
Hawkins Neil S. Vega Ada C. 

Lavigne
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Employees can now belong to multiple groups
Graph Databases vs Relational Databases

-- Create the Groups table
CREATE TABLE Groups
(
GroupId INT IDENTITY(1,1),
GroupName VARCHAR(64),
CONSTRAINT pkcGroups PRIMARY KEY CLUSTERED (GroupId)

)
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Graph Databases vs Relational Databases

-- Create the Employee_Group join table
CREATE TABLE Employee_Group
(
GroupId INT,
EmployeeId INT,
CONSTRAINT pkcEmployeeGroup PRIMARY KEY CLUSTERED (GroupId, EmployeeId),
CONSTRAINT fkEmployeeGroup_Groups FOREIGN KEY (GroupId) REFERENCES Groups(GroupId),
CONSTRAINT fkEmployeeGroup_Employees FOREIGN KEY (EmployeeId) REFERENCES Employees(EmployeeId)

)

Employees can now belong to multiple groups
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Graph Databases vs Relational Databases

-- Populate the Employee_Group table from Employees and Groups
INSERT INTO Employee_Group (GroupId, EmployeeId)
SELECT Groups.GroupId,

Employees.EmployeeId
FROM Employees,

Groups
WHERE Groups.GroupName = Employees.EmployeeGroup

Employees can now belong to multiple groups
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Graph Databases vs Relational Databases

-- Drop the Employees.EmployeeGroup column that is no longer valid
ALTER TABLE Employees DROP COLUMN EmployeeGroup

Employees can now belong to multiple groups
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Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

GroupId EmployeeId

1 3

2 1

2 2

Employees can now belong to multiple groups
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// Add link to existing node
g.V('Sales').addE('member').to(g.V('Ada C. Lavigne’))

Graph Databases vs Relational Databases

Employees can now belong to multiple groups
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Graph Databases vs Relational Databases

Added 2 tables; 6 rows; 4 new columns
Removed a column

+1 document

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

GroupId EmployeeId

1 3

2 1

2 2

Employees can now belong to multiple groups

Wills B 
Hawkins Neil S. Vega Ada C. 

Lavigne

Sales Engineering

member
member member

member
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Graph Databases vs Relational Databases

g.V('Sales').outE('member’).inV()

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

SELECT Employees.EmployeeId,
Employees.EmployeeName

FROM Employees
INNER JOIN Employee_Group

ON Employee_Group.EmployeeId = Employees.EmployeeId
INNER JOIN Groups

ON Groups.GroupId = Employee_Group.GroupId
WHERE Groups.GroupName = 'Sales'

Employees can now belong to multiple groups

Wills B 
Hawkins Neil S. Vega Ada C. 

Lavigne
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Graph Databases vs Relational Databases

Nested Groups

-- Create the new Product Group
INSERT INTO Groups (GroupName) VALUES ('Product Group')
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Graph Databases vs Relational Databases

Nested Groups

-- Associate everyone to the new Product Group
INSERT INTO Employee_Group (GroupId, EmployeeId)
SELECT Groups.GroupId,

Employees.EmployeeId
FROM Groups,

Employees
WHERE Groups.GroupName = 'Product Group
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Graph Databases vs Relational Databases

Nested Groups

-- Create the Group/Group union table
CREATE TABLE Group_Group
(
ParentGroupId INT,
ChildGroupId INT,
CONSTRAINT pkcGroup_Group PRIMARY KEY CLUSTERED (ParentGroupId, ParentGroupId),
CONSTRAINT fkGroupGroup_Groups_Parent FOREIGN KEY (ParentGroupId) REFERNCES Groups(GroupId),
CONSTRAINT fkGroupGroup_Groups_Child FOREIGN KEY (ChildGroupId)  REFERNCES Groups(GroupId)

)
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Graph Databases vs Relational Databases

Nested Groups

-- Relate the child groups to the parent group
INSERT INTO Group_Group (ParentGroupId, ChildGroupId)
SELECT (SELECT GroupId FROM Groups WHERE GroupName = 'Product Group’),

Groups.GroupId
FROM Groups

WHERE Groups.GroupName <> 'Product Group’
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Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Nested Groups

ParentGroupId ChildGroupId

3 1

3 2
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Graph Databases vs Relational Databases

Nested Groups

// Add supergroup node
g.addV('group').property('id', 'Product Group')

// Link to adjacent nodes
g.V('Product Group').addE('contains_subgroup').to(g.V('Engineering’))
g.V('Product Group').addE('contains_subgroup').to(g.V('Sales'))
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Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Nested Groups

ParentGroupId ChildGroupId

3 1

3 2

Added 1 table; 6 rows; 2 new columns +3 documents

Wills B 
Hawkins Neil S. Vega Ada C. 

Lavigne

Sales Engineering

member
member

membermember

Product 
Group

contains_subgroup

contains_subgroup
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Graph Databases vs Relational Databases

Nested Groups

GroupId GroupName

1 Engineering

2 Sales

SELECT Groups.GroupId,
Groups.GroupName

FROM Groups
INNER JOIN Group_Group ON Group_Group.ChildGroupId = Groups.GroupId
WHERE Group_Group.ParentGroupId = (SELECT GroupId

FROM Groups
WHERE GroupName = 'Product Group')

g.V('Product Group’)
.outE('contains_subgroup’)
.inV()

Sales Engineering
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Graph Databases vs Relational Databases

Additional Hierarchies

-- Create the Employee/Employee join table
CREATE TABLE Employee_Employee
(

ParentEmployeeId INT,
ChildEmployeeId INT,
CONSTRAINT pkcEmployeeEmployee PRIMARY KEY CLUSTERED (ParentEmployeeId, ChildEmployeeId),
CONSTRAINT fkEmployeeEmployee_Employee_Parent FOREIGN KEY (ParentEmployeeId) REFERENCES Employees(EmployeeId),
CONSTRAINT fkEmployeeEmployee_Employee_Child FOREIGN KEY (ChildEmployeeId) REFERENCES Employees(EmployeeId)

)
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Graph Databases vs Relational Databases

Additional Hierarchies

-- Make Ada the boss
INSERT INTO Employee_Employee (ParentEmployeeId, ChildEmployeeId)
SELECT (SELECT EmployeeId FROM Employees WHERE EmployeeName = 'Ada C. Lavigne'),

EmployeeId
FROM Employees

WHERE EmployeeId IN (SELECT EmployeeId
FROM Employee_Group

WHERE Employee_Group.GroupId = (SELECT GroupId
FROM Groups

WHERE GroupName = 'Sales'))
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Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Additional Hierarchies

ParentGroupId ChildGroupId

3 1

3 2

ParentEmployeeId ChildEmployeeId

3 1

3 2

3 3
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Graph Databases vs Relational Databases

Additional Hierarchies

// Add relationships
g.V('Ada C. Lavigne').addE('has_report').to(g.V('Willis B. Hawkins'))
g.V('Ada C. Lavigne').addE('has_report').to(g.V('Neil S. Vega'))
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Graph Databases vs Relational Databases
EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Additional Hierarchies

ParentGroupId ChildGroupId

3 1

3 2

ParentEmployeeId ChildEmployeeId

3 1

3 2

3 3

Added 1 table; 2 rows; 2 new columns +2 documents

Wills B 
Hawkins Neil S. Vega Ada C. 

Lavigne

Sales Engineering

member
member

membermember

Product 
Group

contains_subgroup

contains_subgroup

has_report
has_report
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SELECT DISTINCT EmployeeName
FROM Employees
INNER JOIN Employee_Group

ON Employee_Group_EmployeeId = Employes.EmployeeId
INNER JOIN Employee_Employee

ON Employee_Employee.ParentEmployeeId = Employees.EmployeeId
WHERE Employee_Group.GroupId = (SELECT GroupId

FROM Groups
WHERE GroupName = ‘Engineering')

Graph Databases vs Relational Databases

Additional Hierarchies

EmployeeName

Ada C. Lavigne

g.V('Engineering’)
.outE('member’)
.inV()
.outE('has_report’)
.values('id') 

Ada C. Lavigne
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Challenges of Relational Databases

• Schema management

• Table alterations

• Costly writes against multiple tables

• Multiple JOIN operations

• Complex read queries

Graph Databases vs Relational Databases
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What is Gremlin

G r a p h i n g  Y o u r  W a y  T h r o u g h  t h e  C o s m o s
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What is a TinkerPop

• Open source, vendor-agnostic, graph computing framework

• Apace2 license

• Allows users to model their domain as graph and analyze using Gremlin

• TinkerPop-enable systems integrate with one another
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What is a TinkerPop

• Gremlin

• Gremlin Console

• Gremlin Server

• TinkerGraph

• Programming Interfaces

• Documentation

• Useful Recipes
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What is a Gremlin

• Graph traversal language and virtual machine

• Supports OLTP and OLAP

• Supports imperative and declarative querying

• Supports user-defined domain specified languages
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What is Cosmos DB

G r a p h i n g  Y o u r  W a y  T h r o u g h  t h e  C o s m o s
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A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Turnkey global 
distribution
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Comprehensive 
SLAs

Turnkey global 
distribution

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Turnkey global 
distribution
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Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Comprehensive 
SLAs

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Comprehensive 
SLAs
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Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Elastic scale out 
of storage & throughput
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Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Guaranteed low latency 
at the 99th percentile

Five well-defined 
consistency models
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No schema or index management

Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Five well-defined 
consistency models

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB
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Battle tested database service

Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Five well-defined 
consistency models

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB
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Battle tested database service

Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Five well-defined 
consistency models

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB
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Ubiquitous regional presence

Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Five well-defined 
consistency models

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB
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Secure by default and enterprise ready

Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Five well-defined 
consistency models

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB
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SQL
MongoDB

Table API

Turnkey global 
distribution

Elastic scale out 
of storage & throughput

Five well-defined 
consistency models

Comprehensive 
SLAs

Guaranteed low latency 
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB
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Exploring Graph
Traversals
G r a p h i n g  Y o u r  W a y  T h r o u g h  t h e  C o s m o s
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Requirements for Speaking Engagement Management

• Where has a presentation been submitted?

• What presentations are tagged with a particular tag?

• Where have presentations tagged with a particular tag been accepted?

• What events has a speaker been accepted at?

• Where were the events a speaker has been accepted to?
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“Schema” speaker

presentation

tag

event

statecountry
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“Schema” speaker

presentation

tag

event

statecountry

presents

submittedTo tagged

countryLocation stateLocation

partOf
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View the whole graph

g.V()
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View all of the edges

g.E()
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View the schema definition

g.V()
.has(‘ownerEmailAddress’, 
‘schemaDefinition’)
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View the schema definition

g.V()
.has(‘ownerEmailAddress’, 
‘schemaDefinition’)
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What presentations are in my repertoire?

g.V()
.hasLabel('presentation')
g.V()
.has('ownerEmailAddress', 
'chadgreen@chadgreen.com')
.hasLabel('presentation')
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What presentations are in my repertoire?

g.V()
.hasLabel('presentation')
.values('name')
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How many presentations are in my repertoire?

g.V()
.hasLabel('presentation')
.count()
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What are the events that I have submitted to?

g.V()
.hasLabel('event')
.has('year', '2020')
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Where has Graphing Your Way Through the Cosmos been submitted to?

g.V()
.hasLabel('presentation’)
.has('name', 'Graphing Your 
Way Through the Cosmos’)
.outE('submittedTo’)
.inV()
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Where has Graphing Your Way Through the Cosmos been submitted to?

g.V()
.hasLabel('presentation')
.has('name', 'Graphing Your 
Way Through the Cosmos')
.outE('submittedTo')
.inV()
.has('year', '2020')
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Where has Graphing Your Way Through the Cosmos been submitted to?

g.V()
.hasLabel('presentation’)
.has('name', 'Graphing Your 
Way Through the Cosmos’)
.outE('submittedTo’)
.inV()
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Where has Graphing Your Way Through the Cosmos been scheduled?

g.V()
.hasLabel('presentation’)
.has('name', 'Graphing Your 
Way Through the Cosmos’)
.outE('submittedTo’)
.has('status', 'Confirmed’)
.inV()
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View all of the tags

g.V()
.hasLabel('tag')
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Focus on the Graph Data tag

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data')
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What presentations are tagged with Graph Data?

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data’)
.inE('tagged')
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What presentations are tagged with Graph Data?

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data’)
.inE('tagged’)
.outV()
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Where have the presentations tagged Graph Data been scheduled?

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data’)
.inE('tagged’)
.outV()
.outE('submittedTo’)
.has('status', 'Confirmed’)
.inV()
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What events have I been scheduled for?

g.E()
.hasLabel('submittedTo’)
.has('status', 'Confirmed’)
.inV()
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What events have I been scheduled for?

g.E()
.hasLabel('submittedTo’)
.has('status', 'Confirmed’)
.inV()

g.V()
.hasLabel(‘event’)
.has(‘presentedAt’, ‘True’)



@chadgreen@chadgreen

What states have I been scheduled to speak in?

g.E()
.hasLabel('submittedTo’)
.has('status', 'Confirmed’)
.inV()
.outE('stateLocation’)
.inV()
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Wrapping Up

• Graphs – set of objects in which pairs are in some sense related

• Graph Theory – Starts with the 7 bridges of Königsberg

• Graph databases – use graph structure to represent and store data

• Azure Cosmos DB – globally distributed, multi-model database service

• Graph vs Relational – lots of benefits that make graph database worth a look

• Graph Traversal – Navigating graph data using patterns
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 C h a d w i c k E G r e e n

Thank You
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