
@chadgreen@chadgreen

Graphing Your Way
Through the Cosmos

Chad Green
C o d e M a s h

J a n u a r y 9 , 2 0 2 0

@chadgreen@chadgreen

Who is Chad Green
D i r e c t o r o f S o f t w a r e D e v e l o p m e n t
S c h o l a r R x

� chadgreen@chadgreen.com

 chadgreen.com

 ChadGreen

 ChadwickEGreen

@chadgreen@chadgreen

What are Graph
Databases

G r a p h i n g Y o u r W a y T h r o u g h t h e C o s m o s

@chadgreen@chadgreen

What is a Graph

• Discrete mathematics

• Structure amounting to a set of objects in which some pairs of the

objects are in some sense related

• Objects correspond to mathematical abstractions called vertices and each

of the related pairs of vertices is called an edge

• Graph Theory is the study of graphs

@chadgreen@chadgreen

What is a Graph

• Depicted in diagrammatic form as a set of dots or circles for the vertices,

joined by lines or curves for the edges

6

4

5

3
2

1

@chadgreen@chadgreen

What is a Graph

@chadgreen@chadgreen

History of Graph Theory

@chadgreen@chadgreen

History of Graph Theory

@chadgreen@chadgreen

History of Graph Theory

Leonard Euler

@chadgreen@chadgreen

History of Graph Theory
Solutio problematis ad
geometriam situs
pertinentis

The solution of a problem
relating to the geometry
of position

@chadgreen@chadgreen

Applications of Graph Theory

• Linguistics

• Physics and Chemistry

• Social Sciences

• Biology

• Computer Science

@chadgreen@chadgreen

@chadgreen@chadgreen

What is a Graph

• Collection of vertices and edges

• Represent entities as vertices and the ways in which those entities relate

to the world as relationships

• Allow us to model all kinds of scenarios

@chadgreen@chadgreen

What is a Graph

@ChadGreen

@AzureCosmosDB@_LBosq

Follows Follows

Follows

Follows

User

User

User
Follows

@chadgreen@chadgreen

What is a Graph Database

A graph database is a database

that uses graph structures to

represent and store data.

@chadgreen@chadgreen

What is a Graph Database

• Represents data as it exists in the real world that are naturally connected

• Does not try to change them in any way to define them as entities

• Graphs are composed of vertices and edges

• Vertices represent specific objects

• Edge is a relation between vertices

• Both vertices and edges can have any number of properties

@chadgreen@chadgreen

Property Graph Model

Name: Chad Green
Location: Louisville, KY

Title: Director of
Software

Development

Name: ScholarRx
Location:

Elizabethtown, KY
Date of Employment: 2/28/2019

Employee Company

Works For

Contains nodes
(vertices) and

relationships (edges)

Nodes and relationships
contain properties

Relationships are named
and directed with a start

and end node

@chadgreen@chadgreen

The Power of Graph Databases

• Performance
• Graph database performance tends to remain relatively constant,

even as the dataset grows

• Flexibility
• Graph data model better accommodates changing business needs

• Agility
• Equip us to perform frictionless development and graceful system

maintenance
• Governance is typically applied in a programmatic fashion

@chadgreen@chadgreen

Common Graph Use Cases

• Internet of Things

• Customer 360

• Asset management

• Recommendations

• Fraud detection

• Data Integration

• Identity and access management

• Social networks

• Communication networks

• Genomics

• Epidemiology

• Semantic Web

• Search

• Social networks

• Recommendations

• Communication networks

• Fraud detection

• Search

• Identity and access management

@chadgreen@chadgreen

Graph vs
Relational

G r a p h i n g Y o u r W a y T h r o u g h t h e C o s m o s

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Relational

Tables

Schema with nullables

Relations with foreign keys

Related data fetched with joins

Graph

Vertices (Nodes)

No schema

Relation is first class citizen

Related data fetched with a pattern

@chadgreen@chadgreen

Graph Databases vs Relational Databases

@chadgreen@chadgreen

Human Resource Data
Graph Databases vs Relational Databases

EmployeeId EmployeeName EmployeeGroup

1 Willis B. Hawkins Sales

2 Neil S. Vega Sales

3 Ada C. Lavigne Engineering

@chadgreen@chadgreen

Human Resource Data
Graph Databases vs Relational Databases

-- Create the Employee Table
CREATE TABLE Employees
(

EmployeeID INT IDENTITY(1,1),
EmployeeName VARCHAR(64),
EmployeeGroup VARCHAR(32),
CONSTRAINT pkcEmployees PRIMARY KEY CLUSTERED (EmployeeId)

)
GO

-- Populate the Employee Table
INSERT INTO Employees (EmployeeName, EmployeeGroup)

VALUES ('Willis B. Hawkins', 'Sales'),
('Neil S. Vega', 'Sales'),
('Ada C. Lavigne', 'Engineering');

GO

@chadgreen@chadgreen

// Create group nodes
g.addV('group').property('id', 'Sales’)
g.addV('group').property('id', 'Engineering’)

// Create employee nodes
g.addV('employee').property('id', 'Willis B. Hawkins’)
g.addV('employee').property('id', 'Neil S. Vega’)
g.addV('employee').property('id', 'Ada C. Lavigne’)

// Create relationships between groups and employees
g.V('Sales').addE('member').to(g.V('Willis B. Hawkins’))
g.V('Sales').addE('member').to(g.V('Neil S. Vega’))
g.V('Engineering').addE('member').to(g.V('Ada C. Lavignee'))

Human Resource Data
Graph Databases vs Relational Databases

@chadgreen@chadgreen

Human Resource Data
Graph Databases vs Relational Databases

EmployeeId EmployeeName EmployeeGroup

1 Willis B. Hawkins Sales

2 Neil S. Vega Sales

3 Ada C. Lavigne Engineering

3 rows, 3 columns 8 documents (vertices and edges)

Wills B
Hawkins Neil S. Vega Ada C.

Lavigne

Sales Engineering

member member member

@chadgreen@chadgreen

Human Resource Data
Graph Databases vs Relational Databases

EmployeeId EmployeeName EmployeeGroup

1 Willis B. Hawkins Sales

2 Neil S. Vega Sales

3 Ada C. Lavigne Engineering

g.V().hasLabel(‘employee’)SELECT * FROM Employees;

Wills B
Hawkins Neil S. Vega Ada C.

Lavigne

@chadgreen@chadgreen

@chadgreen@chadgreen

Employees can now belong to multiple groups
Graph Databases vs Relational Databases

-- Create the Groups table
CREATE TABLE Groups
(
GroupId INT IDENTITY(1,1),
GroupName VARCHAR(64),
CONSTRAINT pkcGroups PRIMARY KEY CLUSTERED (GroupId)

)

@chadgreen@chadgreen

Graph Databases vs Relational Databases

-- Create the Employee_Group join table
CREATE TABLE Employee_Group
(
GroupId INT,
EmployeeId INT,
CONSTRAINT pkcEmployeeGroup PRIMARY KEY CLUSTERED (GroupId, EmployeeId),
CONSTRAINT fkEmployeeGroup_Groups FOREIGN KEY (GroupId) REFERENCES Groups(GroupId),
CONSTRAINT fkEmployeeGroup_Employees FOREIGN KEY (EmployeeId) REFERENCES Employees(EmployeeId)

)

Employees can now belong to multiple groups

@chadgreen@chadgreen

Graph Databases vs Relational Databases

-- Populate the Employee_Group table from Employees and Groups
INSERT INTO Employee_Group (GroupId, EmployeeId)
SELECT Groups.GroupId,

Employees.EmployeeId
FROM Employees,

Groups
WHERE Groups.GroupName = Employees.EmployeeGroup

Employees can now belong to multiple groups

@chadgreen@chadgreen

Graph Databases vs Relational Databases

-- Drop the Employees.EmployeeGroup column that is no longer valid
ALTER TABLE Employees DROP COLUMN EmployeeGroup

Employees can now belong to multiple groups

@chadgreen@chadgreen

Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

GroupId EmployeeId

1 3

2 1

2 2

Employees can now belong to multiple groups

@chadgreen@chadgreen

// Add link to existing node
g.V('Sales').addE('member').to(g.V('Ada C. Lavigne’))

Graph Databases vs Relational Databases

Employees can now belong to multiple groups

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Added 2 tables; 6 rows; 4 new columns
Removed a column

+1 document

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

GroupId EmployeeId

1 3

2 1

2 2

Employees can now belong to multiple groups

Wills B
Hawkins Neil S. Vega Ada C.

Lavigne

Sales Engineering

member
member member

member

@chadgreen@chadgreen

Graph Databases vs Relational Databases

g.V('Sales').outE('member’).inV()

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

SELECT Employees.EmployeeId,
Employees.EmployeeName

FROM Employees
INNER JOIN Employee_Group

ON Employee_Group.EmployeeId = Employees.EmployeeId
INNER JOIN Groups

ON Groups.GroupId = Employee_Group.GroupId
WHERE Groups.GroupName = 'Sales'

Employees can now belong to multiple groups

Wills B
Hawkins Neil S. Vega Ada C.

Lavigne

@chadgreen@chadgreen

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Nested Groups

-- Create the new Product Group
INSERT INTO Groups (GroupName) VALUES ('Product Group')

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Nested Groups

-- Associate everyone to the new Product Group
INSERT INTO Employee_Group (GroupId, EmployeeId)
SELECT Groups.GroupId,

Employees.EmployeeId
FROM Groups,

Employees
WHERE Groups.GroupName = 'Product Group

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Nested Groups

-- Create the Group/Group union table
CREATE TABLE Group_Group
(
ParentGroupId INT,
ChildGroupId INT,
CONSTRAINT pkcGroup_Group PRIMARY KEY CLUSTERED (ParentGroupId, ParentGroupId),
CONSTRAINT fkGroupGroup_Groups_Parent FOREIGN KEY (ParentGroupId) REFERNCES Groups(GroupId),
CONSTRAINT fkGroupGroup_Groups_Child FOREIGN KEY (ChildGroupId) REFERNCES Groups(GroupId)

)

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Nested Groups

-- Relate the child groups to the parent group
INSERT INTO Group_Group (ParentGroupId, ChildGroupId)
SELECT (SELECT GroupId FROM Groups WHERE GroupName = 'Product Group’),

Groups.GroupId
FROM Groups

WHERE Groups.GroupName <> 'Product Group’

@chadgreen@chadgreen

Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Nested Groups

ParentGroupId ChildGroupId

3 1

3 2

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Nested Groups

// Add supergroup node
g.addV('group').property('id', 'Product Group')

// Link to adjacent nodes
g.V('Product Group').addE('contains_subgroup').to(g.V('Engineering’))
g.V('Product Group').addE('contains_subgroup').to(g.V('Sales'))

@chadgreen@chadgreen

Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Nested Groups

ParentGroupId ChildGroupId

3 1

3 2

Added 1 table; 6 rows; 2 new columns +3 documents

Wills B
Hawkins Neil S. Vega Ada C.

Lavigne

Sales Engineering

member
member

membermember

Product
Group

contains_subgroup

contains_subgroup

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Nested Groups

GroupId GroupName

1 Engineering

2 Sales

SELECT Groups.GroupId,
Groups.GroupName

FROM Groups
INNER JOIN Group_Group ON Group_Group.ChildGroupId = Groups.GroupId
WHERE Group_Group.ParentGroupId = (SELECT GroupId

FROM Groups
WHERE GroupName = 'Product Group')

g.V('Product Group’)
.outE('contains_subgroup’)
.inV()

Sales Engineering

@chadgreen@chadgreen

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Additional Hierarchies

-- Create the Employee/Employee join table
CREATE TABLE Employee_Employee
(

ParentEmployeeId INT,
ChildEmployeeId INT,
CONSTRAINT pkcEmployeeEmployee PRIMARY KEY CLUSTERED (ParentEmployeeId, ChildEmployeeId),
CONSTRAINT fkEmployeeEmployee_Employee_Parent FOREIGN KEY (ParentEmployeeId) REFERENCES Employees(EmployeeId),
CONSTRAINT fkEmployeeEmployee_Employee_Child FOREIGN KEY (ChildEmployeeId) REFERENCES Employees(EmployeeId)

)

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Additional Hierarchies

-- Make Ada the boss
INSERT INTO Employee_Employee (ParentEmployeeId, ChildEmployeeId)
SELECT (SELECT EmployeeId FROM Employees WHERE EmployeeName = 'Ada C. Lavigne'),

EmployeeId
FROM Employees

WHERE EmployeeId IN (SELECT EmployeeId
FROM Employee_Group

WHERE Employee_Group.GroupId = (SELECT GroupId
FROM Groups

WHERE GroupName = 'Sales'))

@chadgreen@chadgreen

Graph Databases vs Relational Databases

EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Additional Hierarchies

ParentGroupId ChildGroupId

3 1

3 2

ParentEmployeeId ChildEmployeeId

3 1

3 2

3 3

@chadgreen@chadgreen

Graph Databases vs Relational Databases

Additional Hierarchies

// Add relationships
g.V('Ada C. Lavigne').addE('has_report').to(g.V('Willis B. Hawkins'))
g.V('Ada C. Lavigne').addE('has_report').to(g.V('Neil S. Vega'))

@chadgreen@chadgreen

Graph Databases vs Relational Databases
EmployeeId EmployeeName

1 Willis B. Hawkins

2 Neil S. Vega

3 Ada C. Lavigne

GroupId GroupName

1 Engineering

2 Sales

3 Product Group

GroupId EmployeeId

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Additional Hierarchies

ParentGroupId ChildGroupId

3 1

3 2

ParentEmployeeId ChildEmployeeId

3 1

3 2

3 3

Added 1 table; 2 rows; 2 new columns +2 documents

Wills B
Hawkins Neil S. Vega Ada C.

Lavigne

Sales Engineering

member
member

membermember

Product
Group

contains_subgroup

contains_subgroup

has_report
has_report

@chadgreen@chadgreen

SELECT DISTINCT EmployeeName
FROM Employees
INNER JOIN Employee_Group

ON Employee_Group_EmployeeId = Employes.EmployeeId
INNER JOIN Employee_Employee

ON Employee_Employee.ParentEmployeeId = Employees.EmployeeId
WHERE Employee_Group.GroupId = (SELECT GroupId

FROM Groups
WHERE GroupName = ‘Engineering')

Graph Databases vs Relational Databases

Additional Hierarchies

EmployeeName

Ada C. Lavigne

g.V('Engineering’)
.outE('member’)
.inV()
.outE('has_report’)
.values('id')

Ada C. Lavigne

@chadgreen@chadgreen

Challenges of Relational Databases

• Schema management

• Table alterations

• Costly writes against multiple tables

• Multiple JOIN operations

• Complex read queries

Graph Databases vs Relational Databases

@chadgreen@chadgreen

What is Gremlin

G r a p h i n g Y o u r W a y T h r o u g h t h e C o s m o s

@chadgreen@chadgreen

What is a TinkerPop

• Open source, vendor-agnostic, graph computing framework

• Apace2 license

• Allows users to model their domain as graph and analyze using Gremlin

• TinkerPop-enable systems integrate with one another

@chadgreen@chadgreen

What is a TinkerPop

• Gremlin

• Gremlin Console

• Gremlin Server

• TinkerGraph

• Programming Interfaces

• Documentation

• Useful Recipes

@chadgreen@chadgreen

What is a Gremlin

• Graph traversal language and virtual machine

• Supports OLTP and OLAP

• Supports imperative and declarative querying

• Supports user-defined domain specified languages

@chadgreen@chadgreen

What is Cosmos DB

G r a p h i n g Y o u r W a y T h r o u g h t h e C o s m o s

@chadgreen@chadgreen

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Turnkey global
distribution

@chadgreen@chadgreen

Comprehensive
SLAs

Turnkey global
distribution

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Turnkey global
distribution

@chadgreen@chadgreen

Turnkey global
distribution

Elastic scale out
of storage & throughput

Comprehensive
SLAs

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Comprehensive
SLAs

@chadgreen@chadgreen

Turnkey global
distribution

Elastic scale out
of storage & throughput

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Elastic scale out
of storage & throughput

@chadgreen@chadgreen

Turnkey global
distribution

Elastic scale out
of storage & throughput

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

Guaranteed low latency
at the 99th percentile

Five well-defined
consistency models

@chadgreen@chadgreen

No schema or index management

Turnkey global
distribution

Elastic scale out
of storage & throughput

Five well-defined
consistency models

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

@chadgreen@chadgreen

Battle tested database service

Turnkey global
distribution

Elastic scale out
of storage & throughput

Five well-defined
consistency models

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

@chadgreen@chadgreen

Battle tested database service

Turnkey global
distribution

Elastic scale out
of storage & throughput

Five well-defined
consistency models

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

@chadgreen@chadgreen

Ubiquitous regional presence

Turnkey global
distribution

Elastic scale out
of storage & throughput

Five well-defined
consistency models

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

@chadgreen@chadgreen

Secure by default and enterprise ready

Turnkey global
distribution

Elastic scale out
of storage & throughput

Five well-defined
consistency models

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

@chadgreen@chadgreen

SQL
MongoDB

Table API

Turnkey global
distribution

Elastic scale out
of storage & throughput

Five well-defined
consistency models

Comprehensive
SLAs

Guaranteed low latency
at the 99th percentile

A globally distributed, massively scalable, multi-model database service
Azure Cosmos DB

@chadgreen@chadgreen

Exploring Graph
Traversals
G r a p h i n g Y o u r W a y T h r o u g h t h e C o s m o s

@chadgreen@chadgreen

Requirements for Speaking Engagement Management

• Where has a presentation been submitted?

• What presentations are tagged with a particular tag?

• Where have presentations tagged with a particular tag been accepted?

• What events has a speaker been accepted at?

• Where were the events a speaker has been accepted to?

@chadgreen@chadgreen

“Schema” speaker

presentation

tag

event

statecountry

@chadgreen@chadgreen

“Schema” speaker

presentation

tag

event

statecountry

presents

submittedTo tagged

countryLocation stateLocation

partOf

@chadgreen@chadgreen

View the whole graph

g.V()

@chadgreen@chadgreen

View all of the edges

g.E()

@chadgreen@chadgreen

View the schema definition

g.V()
.has(‘ownerEmailAddress’,
‘schemaDefinition’)

@chadgreen@chadgreen

View the schema definition

g.V()
.has(‘ownerEmailAddress’,
‘schemaDefinition’)

@chadgreen@chadgreen

What presentations are in my repertoire?

g.V()
.hasLabel('presentation')
g.V()
.has('ownerEmailAddress',
'chadgreen@chadgreen.com')
.hasLabel('presentation')

@chadgreen@chadgreen

What presentations are in my repertoire?

g.V()
.hasLabel('presentation')
.values('name')

@chadgreen@chadgreen

How many presentations are in my repertoire?

g.V()
.hasLabel('presentation')
.count()

@chadgreen@chadgreen

What are the events that I have submitted to?

g.V()
.hasLabel('event')
.has('year', '2020')

@chadgreen@chadgreen

Where has Graphing Your Way Through the Cosmos been submitted to?

g.V()
.hasLabel('presentation’)
.has('name', 'Graphing Your
Way Through the Cosmos’)
.outE('submittedTo’)
.inV()

@chadgreen@chadgreen

Where has Graphing Your Way Through the Cosmos been submitted to?

g.V()
.hasLabel('presentation')
.has('name', 'Graphing Your
Way Through the Cosmos')
.outE('submittedTo')
.inV()
.has('year', '2020')

@chadgreen@chadgreen

Where has Graphing Your Way Through the Cosmos been submitted to?

g.V()
.hasLabel('presentation’)
.has('name', 'Graphing Your
Way Through the Cosmos’)
.outE('submittedTo’)
.inV()

@chadgreen@chadgreen

Where has Graphing Your Way Through the Cosmos been scheduled?

g.V()
.hasLabel('presentation’)
.has('name', 'Graphing Your
Way Through the Cosmos’)
.outE('submittedTo’)
.has('status', 'Confirmed’)
.inV()

@chadgreen@chadgreen

View all of the tags

g.V()
.hasLabel('tag')

@chadgreen@chadgreen

Focus on the Graph Data tag

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data')

@chadgreen@chadgreen

What presentations are tagged with Graph Data?

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data’)
.inE('tagged')

@chadgreen@chadgreen

What presentations are tagged with Graph Data?

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data’)
.inE('tagged’)
.outV()

@chadgreen@chadgreen

Where have the presentations tagged Graph Data been scheduled?

g.V()
.hasLabel('tag’)
.has('name', 'Graph Data’)
.inE('tagged’)
.outV()
.outE('submittedTo’)
.has('status', 'Confirmed’)
.inV()

@chadgreen@chadgreen

What events have I been scheduled for?

g.E()
.hasLabel('submittedTo’)
.has('status', 'Confirmed’)
.inV()

@chadgreen@chadgreen

What events have I been scheduled for?

g.E()
.hasLabel('submittedTo’)
.has('status', 'Confirmed’)
.inV()

g.V()
.hasLabel(‘event’)
.has(‘presentedAt’, ‘True’)

@chadgreen@chadgreen

What states have I been scheduled to speak in?

g.E()
.hasLabel('submittedTo’)
.has('status', 'Confirmed’)
.inV()
.outE('stateLocation’)
.inV()

@chadgreen@chadgreen

Wrapping Up

• Graphs – set of objects in which pairs are in some sense related

• Graph Theory – Starts with the 7 bridges of Königsberg

• Graph databases – use graph structure to represent and store data

• Azure Cosmos DB – globally distributed, multi-model database service

• Graph vs Relational – lots of benefits that make graph database worth a look

• Graph Traversal – Navigating graph data using patterns

@chadgreen@chadgreen

� c h a d g r e e n @ c h a d g r e e n . c o m

 c h a d g r e e n . c o m

 C h a d G r e e n

 C h a d w i c k E G r e e n

Thank You

	Graphing Your Way Through the Cosmos
	Who is Chad Green
	What are Graph Databases
	What is a Graph
	What is a Graph
	What is a Graph
	History of Graph Theory
	History of Graph Theory
	History of Graph Theory
	History of Graph Theory
	Application of Graph Theory
	No More Math Talk
	What is a Graph
	What is a Graph
	What is a Graph Database
	What is a Graph Database
	Property Graph Model
	The Power of Graph Databases
	Common Graph Use Cases
	Graph vs Relational
	Graph Databases vs Relational Databases
	Graph Databases vs Relational Databases: Human Resource Data
	Human Resource Data – Relational Data Structure
	Human Resource Data – Schema Creation SQL
	Human Resource Data - Gremlin
	Human Resource Data – Schema Comparison
	Human Resource Data – Selection Queries
	Graph Database vs Relational Databases: Company Reorganization
	Company Reorganization – Create Groups Table
	Company Reorganization – Create Employee_Group Table
	Company Reorganization – Populate Employee_Group
	Company Reorganization – Drop Employees.EmployeeGroup Column
	Company Reorganization – Relational Schema
	Company Reorganization - Gremlin
	Company Reorganization – Schema Comparison
	Company Reorganization – Selection Queries
	Graph Database vs Relational Databases: Corporate Merger
	Corporate Merger – Insert Product Group
	Corporate Merger – Associate to new Product Group
	Corporate Merger – Create Group_Group Table
	Corporate Merger – Populate Group_Group Table
	Corporate Merger – Relational Schema
	Corporate Merger - Gremlin
	Corporate Merger – Schema Comparison
	Corporate Merger – Selection Queries
	Graph Database vs Relational Databases: Management
	Additional Hierarchies – Create Employee_Employee Table
	Additional Hierarchies – Populate Employee_Employee Table
	Additional Hierarchies – Relational Schema
	Additional Hierarchies - Gremlin
	Additional Hierarchies – Schema Comparison
	Additional Hierarchies – Selection Queries
	Challenges of Relational Databases
	What is Cosmos DB
	What is a Graph
	What is a Graph
	What is a Graph
	What is Cosmos DB
	Azure Cosmos DB : Turnkey global distribution
	Azure Cosmos DB: Comprehensive SLAs
	Azure Cosmos DB: Elastic scale out of storage & throughput
	Azure Cosmos DB: Guaranteed low latency �at the 99th percentile
	Azure Cosmos DB: Five well-defined �consistency models
	Azure Cosmos DB: No schema or index management
	Azure Cosmos DB: Battle tested database service
	Azure Cosmos DB: Battle tested database service
	Azure Cosmos DB: Ubiquitous regional presence
	Azure Cosmos DB: Secure by default and enterprise ready
	Azure Cosmos DB: 5 Data Model APIs
	Exploring Graph Traversals
	Requirements for Speaking Engagement Management
	Speaking Engagement Management “Schema”
	Speaking Engagement Management “Schema”
	Traversals: View the whole graph
	Traversals: View all of the edges
	Traversals: View the schema definition
	Traversals: View the schema definition (properties)
	Traversals: What presentations are in my repertoire?
	Traversals: What presentations are in my repertoire? (name value only)
	Traversals: How many presentations are in my repertoire
	Traversals: What are the events that I have submitted to?
	Traversals: Where has Graphing Your Way Through the Cosmos been submitted to?
	Traversals: Where has Graphing Your Way Through the Cosmos been submitted to? 2020
	Traversals: Where has Graphing Your Way Through the Cosmos been submitted to?
	Traversals: Where has Graphing Your Way Through the Cosmos been scheduled?
	Traversals: View all of the tags
	Traversals: Focus on the Graph Data tag
	Traversals: What presentations have been tagged with Graph Data?
	Traversals: What presentations are tagged with Graph Data?
	Traversals: Where have the presentations tagged Graph Data been scheduled?
	Traversals: What events have been scheduled for?
	Traversals: What events have I been scheduled for?
	Traversals: What states have I been scheduled to speak in?
	Wrapping Up
	Thank You!

