
Software Craftsmanship
for Non-Developers
Cincinnati Day of Agile
July 27, 2018

Who is Chad Green?
Data & Solutions Architect at ProgressiveHealth

Previous Positions
• Service Delivery Manager
• Product Delivery Manager
• Project Manager
• .NET Solution Architect
• Developer

Community Involvement
Code PaLOUsa Conference Chair
Louisville .NET Meetup Organizer
Louisville Tech Leaders Meetup Organizer
Louisville Tech Ladies Co-Organizer

Contact Information
chadgreen@chadgreen.com
chadgreen.com
@ChadGreen
ChadwickEGreen

mailto:chadgreen@chadgreen.com

Why do we need to worry
about software
craftsmanship?

Because we all need to be
a part of the solution.

What is Software Craftsmanship
Software Craftsmanship for Non-Developers

Software Craftsmanship for Non Developers

What Software Craftsmanship is not

page
07

• Beautiful code

• Test-Driven Development

• Self-selected group of people

• Specific technologies or methodologies

• Certifications

• Religion

Software Craftsmanship for Non Developers

What is Software Craftsmanship

page
08

• Software developers have had hard time defining themselves:
• Historically practitioners of well-defined statistical analysis and

mathematical rigor of a scientific approach with computational
theory

• Changed to an engineering approach with connotations of
precision, predictability, measurement, risk mitigation, and
professionalism

• Agile Manifesto question some these assumptions

Software Craftsmanship for Non Developers

What is Software Craftsmanship

page
09

Agile Manifesto question some these assumptions

Individuals and interactions over processes and tools

Software Craftsmanship for Non Developers

Craft, Trade, Engineering, Science, or Art

page
010

• Craft/Trade – Profession that requires particular skills and knowledge of skilled work

• Engineering – Creative application of science, mathematical methods, and empirical
evidence to the innovation, design, construction, operation, and maintenance of
structures, machines, materials, devices, systems, processes, and organizations

• Science – Systematic enterprise that builds and organizes knowledge in the form of
testable explanations and predictions about the universe

• Art – Diverse range of human activities in creating visual, auditory, or performing
artifacts, expressing the author’s imaginative, conceptual idea, or technical skill,
intended to be appreciated for their beauty or emotional power

Software Craftsmanship is about
professionalism in software development.

Software Craftsmanship for Non Developers

Software Craftsmanship History

page
012

• 1992 – Jack W. Reeves publishes “What Is Software Design?” essay
• 1997 – Andrew Hunt and David Thomas publish The Pragmatic Programmer
• 2001 – Pete McBreen publishes Software Craftsmanship
• 2002 – Software Apprenticeship Summit
• 2006 – 8th Light Founded
• 2008 – Bob Martin proposes fifth value for the Agile Manifesto:

Craftsmanship over Crap
• 2008 – Bob Martin publishes Clean Code: A Handbook of Agile Software

Craftsmanship
• 2008 – Software Craftsmanship Summit
• 2009 – Manifesto for Software Craftsmanship
• 2011 – Bob Martin publishes The Clean Coder: A Code of Conduct for

Professional Programmers

Software Craftsmanship for Non Developers

Manifesto for Software Craftsmanship

page
013

Not only working software,
but also well-crafted software

Not only responding to change,
but also steadily adding value

Not only individuals and interactions,
but also a community of professionals

Not only customer collaboration,
but also productive partnerships

Software Craftsmanship for Non Developers

Manifesto for Software Craftsmanship

page
014

Not only working software,
but also well-crafted software

Software Craftsmanship for Non Developers

Manifesto for Software Craftsmanship

page
015

Not only responding to change,
but also steadily adding value

Try and leave this world a little better than you
found it, and when you turn comes to die you can
die happy in feeling that at any rate you have not
wasted your time but have done your best.

Robert Stephenson Smyth Bader-Powell,
founder of The Scout Association

Software Craftsmanship for Non Developers

Manifesto for Software Craftsmanship

page
017

Not only individuals and interactions,
but also a community of professionals

Software Craftsmanship for Non Developers

Manifesto for Software Craftsmanship

page
018

Not only customer collaboration,
but also productive partnerships

Technical Debt
Software Craftsmanship for Non-Developers

Software Craftsmanship for Non Developers

What is Technical Debt

page
020

• Reflects the implied cost of additional rework caused by choosing
an easy solution now instead of using a better approach that would
take longer

• Technical debt can be compared to monetary debt – If not repaid, it
can accumulate interest, making it hard to implement changes later
on

Software Craftsmanship for Non Developers

Example of Technical Debt

page
021

• Start writing an application and there is no need for user roles –
everyone can do everything

• Requirement comes in for a permission for a specific requirement

• Some time later another things requires the differentiation of users,
and then another and another

• The company has the opportunity to add five customers in a week –
but really need another permission change in a couple of days

Software Craftsmanship for Non Developers

Example of Technical Debt – Decision Time

page
022

• 4 now (the permission), 22 later (the refactoring, that now is a bit
complicated)
• Company has added 5 clients to the portfolio and the money

comes in early
• 21 now (the refactoring), 0 later (the permission)

• Company has not added the 5 clients to the portfolio, so the
money comes later

• 4 now (the permission), no refactoring at all, and then 5 for the next
permission, and then 6, 7…
• The money comes earlier, but the next time it’s required to do

something it will take way more time

Software Craftsmanship for Non Developers

Common Causes of Technical Debt

page
023

• Insufficient up-front definition

• Business pressures

• Lack of process or understanding

• Tightly-coupled components

• Lack of a test suite

• Lack of documentation

• Lack of collaboration

• Parallel development

• Delayed refactoring

• Lack of alignment to standards

• Lack of knowledge

• Lack of ownership

• Poor technological leadership
• Last minute specification

changes

SOLID Principles
Software Craftsmanship for Non-Developers

Software Craftsmanship for Non Developers

S.O.L.I.D.

page
025

• First five object-oriented design principles
• S – Single-responsibility principle
• O – Open-closed principle
• L – Liskov substitution principle
• I – Interface segregation principle
• D – Dependency Inversion Principle

Software Craftsmanship for Non Developers

Single Responsibility Principle (SRP)

page
026

• A module should have one, and only one, reason to change
• A module should be responsible to one, and only one, actor

Software Craftsmanship for Non Developers

Single Responsibility Principle (SRP)

page
027

• A module should be responsible to one, and only one, actor

CFO

COO

CTO

Employee

+ Caculate Pay
+ ReportHours
+ Save

Class violates the SRB because the three methods
are responsible to different actors

• The CalculatePay method is specified by the
accounting department, which reports to the CFO

• The ReportHours method is specified and used by
the human resources department, which reports to
the COO

• The Save method is specified b the database
administrators, who report to the CTO

Software Craftsmanship for Non Developers

Open-Closed Principle (OCP)

page
028

• A software artifact should be open for extension but closed for
modification

Software Craftsmanship for Non Developers

Liskov Substitution Principle (LSP)

page
029

• Let q(x) be a property provable about objects of x of type T. Then
q(y) should be provable for objects y of type y where S is a subtype
of T

• Every subclass/derived class should be substitutable for their
base/parent class

Billing License

+ CalculateFee()

Personal License

+ CalculateFee()

Business License

+ CalculateFee()

Software Craftsmanship for Non Developers

Interface Segregation Principle (ISP)

page
030

• A client should never be forced to implement an interface that it
does not use or clients should not be forced to depend on methods
they do not use

Software Craftsmanship for Non Developers

Dependency Inversion Principle (DIP)

page
031

• Entities must depend on abstractions not on concretions. It states
that the high level module must not depend on the low level module,
but they should depend on abstractions.

Other Key Principles
Software Craftsmanship for Non-Developers

Software Craftsmanship for Non Developers

DRY – Don’t Repeat Yourself

page
033

• Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system

• Alternative is to have the same thing expressed in two or more
place. If you change one, you have to remember to change the
others.

• It isn’t a question of whether you will remember: it’s a question of
when you will forget

If you write it once, think about encapsulating it.
If you write it twice, you have to encapsulate it. If
you write it three times, programming isn’t for
you.

Phil Japikse, Microsoft MVP, ASPInsider, MCSD,
MCDBA, PSM II, PSD, CSM, Consultant, Coach,
Author, Trainer

Software Craftsmanship for Non Developers

KISS – Keep it Simple Stupid

page
035

• The simplest explanation tends to be the right one

Software Craftsmanship for Non Developers

YAGNI – You Aren’t Going to Need It

page
036

• Always implement things when you actually need them, never when
you just foresee that you need them

• Principle behind XP practice of “do the simplest thing that could
possibly work”

Key Practices
Software Craftsmanship for Non-Developers

Software Craftsmanship for Non Developers

TDD – Test Driven Development

page
038

• Software development process that relies on the repetition of very
short development cycle: requirements are turned into very specific
test cases, then the software is improved to pass the new tests,
only

• Three Laws of TDD
1. You are not allowed to write any production code until you

have first written a failing unit test.
2. You are not allowed to write more of a unit test than is

sufficient to fail – and not compiling is failing
3. You are not allowed to write more production code that is

sufficient to pass the currently failing unit test

Software Craftsmanship for Non Developers

Pair Programming

page
039

• Technique in which two programmers work together at one
workstation
• The driver writes code while the observer reviews each line of

code as it is typed

Software Craftsmanship for Non Developers

Practicing/Coding Dojos

page
040

• Technique in which two programmers work together at one
workstation
• The driver writes code while the observer reviews each line of

code as it is typed

Code Smells
Software Craftsmanship for Non-Developers

Software Craftsmanship for Non Developers

Code Smells - Comments

page
042

• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code

Software Craftsmanship for Non Developers

Code Smells - Comments

page
043

• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code

Software Craftsmanship for Non Developers

Code Smells - Comments

page
044

• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code

Software Craftsmanship for Non Developers

Code Smells - Comments

page
045

• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code

Software Craftsmanship for Non Developers

Code Smells - Comments

page
046

• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code

Software Craftsmanship for Non Developers

Code Smells - Environment

page
047

• Build Requires More Than One Step
• Tests Require More Than One Step

Software Craftsmanship for Non Developers

Code Smells - Environment

page
048

• Build Requires More Than One Step
• Tests Require More Than One Step

Software Craftsmanship for Non Developers

Code Smells - Functions

page
049

• Dead Function

Software Craftsmanship for Non Developers

Code Smells - General

page
050

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
051

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
052

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
053

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication (DRY – Don’t Repeat Yourself)
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
054

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
055

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
056

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
057

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
058

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

DateTime newDate = date.add(5)
DateTime newDate = date.AddDays(5)

Software Craftsmanship for Non Developers

Code Smells - General

page
059

• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

Software Craftsmanship for Non Developers

Code Smells - General

page
060

• Replace Magic Numbers with Named Constants
• Functions Should Do One Thing 3.141592653589793

3.1415927535897933.141592753589793

Software Craftsmanship for Non Developers

Code Smells - General

page
061

• Replace Magic Numbers with Named Constants
• Functions Should Do One Thing

Software Craftsmanship for Non Developers

Code Smells - Names

page
062

• Chose Descriptive Names
• Avoid Encodings
• Names Should Describe Side-Effects

Software Craftsmanship for Non Developers

Code Smells – Names: Choose Descriptive Names

page
063

CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View

@ID INT = 0,

@cond_workout_ID INT = 0

AS

BEGIN

SELECT al.ID,

al.cond_workout_ID,

al.activity,

al.mins,

al.cal_burn,

a.Category,

ai.ID AS intensity_id,

ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al

INNER JOIN HII_Cond_Activities a ON a.ID = al.activity

LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity

WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)

ORDER BY al.created_date

END

CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View

@ID INT = 0,

@cond_workout_ID INT = 0

AS

BEGIN

SELECT al.ID,

al.cond_workout_ID,

al.activity,

al.mins,

al.cal_burn,

a.Category,

ai.ID AS intensity_id,

ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al

INNER JOIN HII_Cond_Activities a ON a.ID = al.activity

LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity

WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)

ORDER BY al.created_date

END

CREATE PROCEDURE dbo.GetWorkActivitiesLog

@Id INT = 0,

@WorkoutId INT = 0

AS

BEGIN

SELECT ActivityLog.ID,

ActivityLog.cond_workout_ID,

ActivityLog.activity,

ActivityLog.mins,

ActivityLog.cal_burn,

Activities.Category,

Intensity.ID AS intensity_id,

Intensity.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log AS ActivityLog

INNER JOIN HII_Cond_Activities AS Activities ON a.ID = ActivityLog.activity

LEFT JOIN HII_Cond_Activities_Intensity Intensity ON Intensity.Activity_ID = a.ID AND ai.ID=ActivityLog.intensity

WHERE ActivityLog.active=1

AND (ActivityLog.cond_workout_ID = @WorkoutId OR ActivtyLog.Id = @ID)

ORDER BY ActivityLog.created_date

END

Software Craftsmanship for Non Developers

Code Smells - Names

page
064

• Chose Descriptive Names
• Avoid Encodings
• Names Should Describe Side-Effects

Software Craftsmanship for Non Developers

Code Smells - Names

page
065

• Chose Descriptive Names
• Avoid Encodings
• Names Should Describe Side-Effects

Software Craftsmanship for Non Developers

Code Smells - Tests

page
066

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast

Software Craftsmanship for Non Developers

Code Smells - Tests

page
067

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast

Software Craftsmanship for Non Developers

Code Smells - Tests

page
068

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast

Software Craftsmanship for Non Developers

Code Smells - Tests

page
069

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast

Software Craftsmanship for Non Developers

Code Smells - Tests

page
070

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast

Software Craftsmanship for Non Developers

Code Smells - Tests

page
071

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast

chadgreen@chadgreen.com
chadgreen.com
@ChadGreen
ChadwickEGreen

bit.ly/DOACraft

thank you.

