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Why do we need to worry 
about software 
craftsmanship?



Because we all need to be 
a part of the solution.



What is Software Craftsmanship
Software Craftsmanship for Non-Developers
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What Software Craftsmanship is not
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• Beautiful code

• Test-Driven Development

• Self-selected group of people

• Specific technologies or methodologies

• Certifications

• Religion
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What is Software Craftsmanship
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• Software developers have had hard time defining themselves:
• Historically practitioners of well-defined statistical analysis and 

mathematical rigor of a scientific approach with computational 
theory

• Changed to an engineering approach with connotations of 
precision, predictability, measurement, risk mitigation, and 
professionalism

• Agile Manifesto question some these assumptions
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What is Software Craftsmanship
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Agile Manifesto question some these assumptions

Individuals and interactions over processes and tools
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Craft, Trade, Engineering, Science, or Art
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• Craft/Trade – Profession that requires particular skills and knowledge of skilled work

• Engineering – Creative application of science, mathematical methods, and empirical 
evidence to the innovation, design, construction, operation, and maintenance of 
structures, machines, materials, devices, systems, processes, and organizations

• Science – Systematic enterprise that builds and organizes knowledge in the form of 
testable explanations and predictions about the universe

• Art – Diverse range of human activities in creating visual, auditory, or performing 
artifacts, expressing the author’s imaginative, conceptual idea, or technical skill, 
intended to be appreciated for their beauty or emotional power



Software Craftsmanship is about 
professionalism in software development.



Software Craftsmanship for Non Developers

Software Craftsmanship History
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• 1992 – Jack W. Reeves publishes “What Is Software Design?” essay
• 1997 – Andrew Hunt and David Thomas publish The Pragmatic Programmer
• 2001 – Pete McBreen publishes Software Craftsmanship
• 2002 – Software Apprenticeship Summit
• 2006 – 8th Light Founded
• 2008 – Bob Martin proposes fifth value for the Agile Manifesto: 

Craftsmanship over Crap
• 2008 – Bob Martin publishes Clean Code: A Handbook of Agile Software 

Craftsmanship
• 2008 – Software Craftsmanship Summit
• 2009 – Manifesto for Software Craftsmanship
• 2011 – Bob Martin publishes The Clean Coder: A Code of Conduct for 

Professional Programmers
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Manifesto for Software Craftsmanship
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Not only working software,
but also well-crafted software

Not only responding to change,
but also steadily adding value

Not only individuals and interactions,
but also a community of professionals

Not only customer collaboration,
but also productive partnerships
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Manifesto for Software Craftsmanship
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Not only working software,
but also well-crafted software
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Manifesto for Software Craftsmanship
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Not only responding to change,
but also steadily adding value



Try and leave this world a little better than you 
found it, and when you turn comes to die you can 
die happy in feeling that at any rate you have not 
wasted your time but have done your best.

Robert Stephenson Smyth Bader-Powell, 
founder of The Scout Association
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Manifesto for Software Craftsmanship
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Not only individuals and interactions,
but also a community of professionals
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Manifesto for Software Craftsmanship
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Not only customer collaboration,
but also productive partnerships



Technical Debt
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What is Technical Debt
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• Reflects the implied cost of additional rework caused by choosing 
an easy solution now instead of using a better approach that would 
take longer

• Technical debt can be compared to monetary debt – If not repaid, it 
can accumulate interest, making it hard to implement changes later 
on
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Example of Technical Debt
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• Start writing an application and there is no need for user roles –
everyone can do everything

• Requirement comes in for a permission for a specific requirement

• Some time later another things requires the differentiation of users, 
and then another and another

• The company has the opportunity to add five customers in a week –
but really need another permission change in a couple of days
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Example of Technical Debt – Decision Time
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• 4 now (the permission), 22 later (the refactoring, that now is a bit 
complicated)
• Company has added 5 clients to the portfolio and the money 

comes in early
• 21 now (the refactoring), 0 later (the permission)

• Company has not added the 5 clients to the portfolio, so the 
money comes later

• 4 now (the permission), no refactoring at all, and then 5 for the next 
permission, and then 6, 7…
• The money comes earlier, but the next time it’s required to do 

something it will take way more time
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Common Causes of Technical Debt
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• Insufficient up-front definition

• Business pressures

• Lack of process or understanding

• Tightly-coupled components

• Lack of a test suite

• Lack of documentation

• Lack of collaboration

• Parallel development

• Delayed refactoring

• Lack of alignment to standards

• Lack of knowledge

• Lack of ownership

• Poor technological leadership
• Last minute specification 

changes



SOLID Principles
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S.O.L.I.D.
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• First five object-oriented design principles
• S – Single-responsibility principle
• O – Open-closed principle
• L – Liskov substitution principle 
• I – Interface segregation principle
• D – Dependency Inversion Principle
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Single Responsibility Principle (SRP)

page
026

• A module should have one, and only one, reason to change
• A module should be responsible to one, and only one, actor
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Single Responsibility Principle (SRP)
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• A module should be responsible to one, and only one, actor

CFO

COO

CTO

Employee

+ Caculate Pay
+ ReportHours
+ Save

Class violates the SRB because the three methods 
are responsible to different actors

• The CalculatePay method is specified by the 
accounting department, which reports to the CFO

• The ReportHours method is specified and used by 
the human resources department, which reports to 
the COO

• The Save method is specified b the database 
administrators, who report to the CTO
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Open-Closed Principle (OCP)
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• A software artifact should be open for extension but closed for 
modification
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Liskov Substitution Principle (LSP)
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• Let q(x) be a property provable about objects of x of type T.  Then 
q(y) should be provable for objects y of type y where S is a subtype 
of T

• Every subclass/derived class should be substitutable for their 
base/parent class

Billing License

+ CalculateFee()

Personal License

+ CalculateFee()

Business License

+ CalculateFee()
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Interface Segregation Principle (ISP)
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• A client should never be forced to implement an interface that it 
does not use or clients should not be forced to depend on methods 
they do not use
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Dependency Inversion Principle (DIP)
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• Entities must depend on abstractions not on concretions.  It states 
that the high level module must not depend on the low level module, 
but they should depend on abstractions.



Other Key Principles
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DRY – Don’t Repeat Yourself
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• Every piece of knowledge must have  a single, unambiguous, 
authoritative representation within a system

• Alternative is to have the same thing expressed in two or more 
place.  If you change one, you have to remember to change the 
others.

• It isn’t a question of whether you will remember: it’s a question of 
when you will forget



If you write it once, think about encapsulating it.  
If you write it twice, you have to encapsulate it.  If 
you write it three times, programming isn’t for 
you.

Phil Japikse, Microsoft MVP, ASPInsider, MCSD, 
MCDBA, PSM II, PSD, CSM, Consultant, Coach, 
Author, Trainer
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KISS – Keep it Simple Stupid

page
035

• The simplest explanation tends to be the right one
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YAGNI – You Aren’t Going to Need It
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• Always implement things when you actually need them, never when 
you just foresee that you need them

• Principle behind XP practice of “do the simplest thing that could 
possibly work”



Key Practices
Software Craftsmanship for Non-Developers



Software Craftsmanship for Non Developers

TDD – Test Driven Development
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• Software development process that relies on the repetition of very 
short development cycle: requirements are turned into very specific 
test cases, then the software is improved to pass the new tests, 
only

• Three Laws of TDD
1. You are not allowed to write any production code until you 

have first written a failing unit test.
2. You are not allowed to write more of a unit test than is 

sufficient to fail – and not compiling is failing
3. You are not allowed to write more production code that is 

sufficient to pass the currently failing unit test
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Pair Programming
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• Technique in which two programmers work together at one 
workstation
• The driver writes code while the observer reviews each line of 

code as it is typed
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Practicing/Coding Dojos
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• Technique in which two programmers work together at one 
workstation
• The driver writes code while the observer reviews each line of 

code as it is typed



Code Smells
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Code Smells - Comments
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• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code
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Code Smells - Comments
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• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code
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Code Smells - Environment
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• Build Requires More Than One Step
• Tests Require More Than One Step
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Code Smells - Environment
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• Build Requires More Than One Step
• Tests Require More Than One Step
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Code Smells - Functions
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• Dead Function
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions
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Code Smells - General
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Code Smells - General
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication (DRY – Don’t Repeat Yourself)
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions
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Code Smells - General
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Code Smells - General
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions

DateTime newDate = date.add(5)
DateTime newDate = date.AddDays(5)
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions
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Code Smells - General
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• Replace Magic Numbers with Named Constants
• Functions Should Do One Thing 3.141592653589793

3.1415927535897933.141592753589793
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Code Smells - General
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• Replace Magic Numbers with Named Constants
• Functions Should Do One Thing
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Code Smells - Names
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• Chose Descriptive Names
• Avoid Encodings
• Names Should Describe Side-Effects
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Code Smells – Names: Choose Descriptive Names
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CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View

@ID INT = 0,

@cond_workout_ID INT = 0

AS

BEGIN

SELECT al.ID,

al.cond_workout_ID,

al.activity,

al.mins,

al.cal_burn,

a.Category,

ai.ID AS intensity_id,

ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al

INNER JOIN HII_Cond_Activities a            ON a.ID = al.activity

LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity

WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)

ORDER BY al.created_date

END

CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View

@ID INT = 0,

@cond_workout_ID INT = 0

AS

BEGIN

SELECT al.ID,

al.cond_workout_ID,

al.activity,

al.mins,

al.cal_burn,

a.Category,

ai.ID AS intensity_id,

ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al

INNER JOIN HII_Cond_Activities a            ON a.ID = al.activity

LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity

WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)

ORDER BY al.created_date

END

CREATE PROCEDURE dbo.GetWorkActivitiesLog

@Id INT = 0,

@WorkoutId INT = 0

AS

BEGIN

SELECT ActivityLog.ID,

ActivityLog.cond_workout_ID,

ActivityLog.activity,

ActivityLog.mins,

ActivityLog.cal_burn,

Activities.Category,

Intensity.ID AS intensity_id,

Intensity.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log AS ActivityLog

INNER JOIN HII_Cond_Activities AS Activities ON a.ID = ActivityLog.activity

LEFT JOIN HII_Cond_Activities_Intensity Intensity ON Intensity.Activity_ID = a.ID AND ai.ID=ActivityLog.intensity

WHERE ActivityLog.active=1

AND (ActivityLog.cond_workout_ID = @WorkoutId OR ActivtyLog.Id = @ID)

ORDER BY ActivityLog.created_date

END
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Code Smells - Names
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• Chose Descriptive Names
• Avoid Encodings
• Names Should Describe Side-Effects
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• Avoid Encodings
• Names Should Describe Side-Effects
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Code Smells - Tests
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• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast
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page
068

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast



Software Craftsmanship for Non Developers

Code Smells - Tests

page
069

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast



Software Craftsmanship for Non Developers

Code Smells - Tests

page
070

• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast



Software Craftsmanship for Non Developers

Code Smells - Tests
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• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast



chadgreen@chadgreen.com
chadgreen.com
@ChadGreen
ChadwickEGreen

bit.ly/DOACraft



thank you.


