

Who is Chad Green

chadgreen@chadgreen.com
TaleLearnCode
ChadGreen.com
ChadGreen & TaleLearnCode
ChadwickEGreen

What is Software
Craftsmanship
Software Craftsmanship for New Developers

What Software Craftsmanship is not

Beautiful Code

What Software Craftsmanship is not

Beautiful Code

What Software Craftsmanship is not

Beautiful Code
Test-Driven

Development

What Software Craftsmanship is not

Beautiful Code
Test-Driven

Development

What Software Craftsmanship is not

Beautiful Code Test-Driven
DevelopmentSelf-Selected Group

of People

What Software Craftsmanship is not

Beautiful Code Test-Driven
DevelopmentSelf-Selected Group

of People

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of PeopleSpecific Technologies

or Methodologies

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of PeopleSpecific Technologies

or Methodologies

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of People

Specific Technologies
or Methodologies

Certifications

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of People

Specific Technologies
or Methodologies

Certifications

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of People

Specific Technologies
or Methodologies Certifications

Religion

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of People

Specific Technologies
or Methodologies Certifications

Religion

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of People

Specific Technologies
or Methodologies Certifications Religion

What Software Craftsmanship is not

Beautiful Code Test-Driven
Development

Self-Selected Group
of People

Specific Technologies
or Methodologies Certifications Religion

Beautiful Code Test-Driven
Development

Self-Selected Group
of People

Specific Technologies
or Methodologies Certifications Religion

Why Software Craftsmanship

• Software developers have had a hard time defining themselves

Scientific
Approach

Engineering
Approach

Presenter
Presentation Notes
Scientific ApproachHistorically practitioners of well-defined statistical analysis and mathematical rigor of a scientific approach with computational theoryEngineering ApproachChanged to an engineering approach with connotations of precision, predictability, measurement, risk mitigation, and professionalism

What is Software Development

Craft/Trade Engineering

Science Art

Presenter
Presentation Notes
Craft/TradeProfession that requires particular skills and knowledge of skilled workEngineeringCreative application of science, mathematical methods, and empirical evidence to the innovation, design, constructions, operation, and maintenance of structure, machines, materials, devices, systems, processes, and organizationsScienceSystematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universeArtDiverse range of human activities in creating visual, auditory, or performing artifacts, expressing the author’s imaginative, conceptual idea, or technical skill, intended to be appreciated for their beauty or emotional power

Agile Manifesto Ignites a Spark

Individuals and interactions
over processes and tools

Presenter
Presentation Notes
Agile Manifesto question software development practices

History of Software Craftsmanship

1992: What is Software Deign

Presenter
Presentation Notes
1992 — Jack W. Reeves publishes “What is Software Design?” essay

History of Software Craftsmanship

1997: The Pragmatic Programmer

Presenter
Presentation Notes
1997 — Andrew Hunt and David Thomas publish The Pragmatic Programmer

History of Software Craftsmanship

2001: Software Craftsmanship

Presenter
Presentation Notes
2001 — Peet McBreen publishes Software Craftsmanship

History of Software Craftsmanship

2002: Software Apprenticeship
Summit

Presenter
Presentation Notes
2002 — Software Apprenticeship Summit

History of Software Craftsmanship

2006: 8th Light Founded

Presenter
Presentation Notes
2006 — 8th Slight Founded

History of Software Craftsmanship

2008: Craftsmanship over Crap

Presenter
Presentation Notes
2008 — Bob Martin proposes fifth value for the Agile Manifesto: Craftsmanship over Crap

History of Software Craftsmanship

2008: Clean Code

Presenter
Presentation Notes
2008 — Bob Martin publishes Clean Code: A Handbook of Agile Software Craftsmanship

History of Software Craftsmanship

2008: Software Craftsmanship
Summit

Presenter
Presentation Notes
2008 — Software Craftsmanship Summit

History of Software Craftsmanship

2009: Manifesto for Software
Craftsmanship

Presenter
Presentation Notes
2009 — Manifesto for Software Craftsmanship

History of Software Craftsmanship

2011: Clean Coder

Presenter
Presentation Notes
2011 — Bob Martin publishes The Clean Coder: A Code of Conduct for Professional Programmers

Manifesto for Software Craftsmanship

Not only working software, but also
well-crafted software

Presenter
Presentation Notes
Not only working software, but also well-crafted softwareThink about 5-year old application. Imagine an application that has no tests; no one knows exactly how the application works; and the code is full of technical and infrastructure terms instead of expressing the business domain; and classes and methods have hundreds, if not thousands, of lines. Also imagine that you need to make changes to this application, but writing tests to it is a massive undertaking. This application is working software, but is it good enough? Well-crafted software means that, regardless of how old the application is, developers can understand it easily. The side effects are well known and controlled. It has high and reliable test coverage, clear and simple design, and business language well expressed in the code. Adding or changing features does not take longer than it used to take at the beginning of the project, when the code base was small.The code must be maintainable and predictable. Developers must know what is going to happen when changing the code and must not be afraid to change it. Changes should be localized and not affect other parts of the application – no ripple effects.In order to evolve applications, developers must not shy away from changing them. Using Test-Driven Development, simple design, and expressing the business language in code are the best ways to keep a healthy and well-crafted code.

Manifesto for Software Craftsmanship

Not only responding to change, but
also steadily adding value

Presenter
Presentation Notes
Not only responding to change, but also steadily adding valueHave you ever thought about how expense software projects are? Think about everyone on the team like the developers, testers, production services, operations, business analysts, product owners, and project managers. There are also sales, marketing, and back office personnel. Image how much is spent in just salaries. Now add the cost of all the computers, furniture, communication infrastructure, office rent, marketing, sales, customer services, catering, cleaning, and everything else.Software projects are normally a massive investment and as with any normal investment, companies will want a return. The only reasons for companies to invest in a software project are to make money, save money, or protect revenue. With that in mind, it is our job to help them achieve that.When we talk about steadily adding value, we are not just talking about adding new features and fixing bugs. This is also about constantly improving the structure of the code, keeping it clean, extendable, testable, and easy to maintain.It is our job to make sure that the older and bigger the software gets, the more the company will benefit from it. We want to keep adding features to the project and making the appropriate changes to the application at the same speed that we used to have at the beginning of the project. This would allow companies to react quickly to the market regardless of how old their software is. As it gets older, software should become more valuable and not a source of pain and increasing cost.The focus on high-quality software must be the number one priority if you want long-lived applications. Totally rewriting a large application a few years after it has been developed makes for a very poor return on investment. On many occasions, the decision to rewrite an application is made because of the prohibitive costs of maintaining it.The problem is that the same bad techniques that were used to build the old application will also be used to build the new one – making the new application as bad as the old application after a short period. It is our job to break this cycle, building applications with well-crafted code.

Try and leave this world a little better
than you found it, and when you turn
comes to dies you can die happy in
the feeling that at any rate you have
not wasted your time but have done
your best.
Robert Stephenson Smyth Bader-Powell,
founder of The Scot Association

Presenter
Presentation Notes
A paraphrase of a Boy Scout rule states that we should always leave the code cleaner than we found it.

Manifesto for Software Craftsmanship

Not only individuals and interactions,
but also a community of

professionals

Presenter
Presentation Notes
Not only individuals and interactions, but also a community of professionalsSharing and mentoring are at the heart of Software Craftsmanship. Software craftsman are passionate and always strive to better themselves. However, we have a far bigger mission: we are responsible for preparing the next generation of craftspeople.The best way to move our industry forward is by sharing what we learned through mentoring and inspiring less-experience developers. This is also related to the idea of apprentices, journeymen, and masters, where Software Craftsmanship masters will mentor apprentices and help them in their journey. Knowledge, ideas, successes, and failures must be shared and discussed within the community in order to move our industry forward.Learning from each other is by far the best way for us to become better. Writing blogs, contributing to open source projects, making our code publicly available, becoming part of our local communities, and pairing with other developers are some of the ways we can contribute to the greater good of our industry.

Manifesto for Software Craftsmanship

Not only customer collaboration, but
also productive partnerships

Presenter
Presentation Notes
Not only customer collaboration, but also productive partnershipsA highly motivated team has a much better change to make any project succeed. Passionate and talented people want to succeed and will always find ways to overcome problems and bureaucracy.Software craftspeople want and need successful projects to build their reputations. We want to be proud of our achievements. Successfully delivering high-quality software and having satisfied customers are essential for a software craftsman’s career.Although extremely important, writing code well is just one of the things we need to do to help a project to succeed. We must help our clients to improve their processes, provide them with more viable options help them to remove unnecessary bureaucracy, understand their business domain, question their requirements in relation to the value they provide, provide them with good information and knowledge, help them to plan and prioritize work, and work on things that, although they are not coding task, are equally important to the project. Providing value to our customers at all levels is what we mean by having a productive partnership.

Software Craftsmanship is

about professionalism in

software development.

Technical Debt
Software Craftsmanship for New Developers

What is Technical Debt

Implied cost of additional rework
caused by choosing an easy

solution

Presenter
Presentation Notes
Reflects the implied cost of additional rework caused by choosing an easy solution now instead of using a better approach that would take longerTechnical debt can be compared to monetary debt — If not repaid, it can accumulate interest, making it hard to implement changes later on.

Example of Technical Debt

No User Roles

Presenter
Presentation Notes
You start writing an application. In the beginning there is no need for user roles. Everyone can do anything.

Example of Technical Debt

No User Roles Permission for Specific
Requirement

Presenter
Presentation Notes
At some point you start having two different permissions for a specific action, like one kind of user can see a report and the others can’t. The tech team considers whether to create a full fledged permission system, using a nice set of design patterns for it. But at this point it really looks like over engineering. One method in the business logic and one in the presentation layer will do.

Example of Technical Debt

No User Roles Permission for Specific
Requirement

Differentiation of Users

Presenter
Presentation Notes
Some time later another thing requires the differentiation of users, and then another and another. At this point the developers realize that the code is starting to get messy and the solution is refactoring it to have a decent permission system. To make this refactoring will take way more time than just adding another method, but will simplify the code and make future permissions to be added with one line of code, or even by just adding a row in the database.

Example of Technical Debt

No User Roles Permission for Specific
Requirement

Differentiation of Users Yet Another Permission
Change

Presenter
Presentation Notes
The company has the opportunity to add five customers in a week – but really need another permission change in a couple of daysThe problem is that there really is a business need to have the current permission live in one or two days, ‘cause this will make five potential customers sign a contract this week, rather than next week, or maybe never, if they dislike the fact that the company haven’t done their only request.

Common Causes of Technical Debt

Insufficient up-front
definition

Presenter
Presentation Notes
Insufficient up-front definition, where requirements are still being defined during development, development starts before any design takes place. This is done to save time but often has to be reworked later.

Common Causes of Technical Debt

Business pressures

Presenter
Presentation Notes
Business pressures, where the business considers getting something released sooner before all of the necessary changes are complete, builds up technical debt comprising those uncompleted changes.

Common Causes of Technical Debt

Lack of process or
understanding

Presenter
Presentation Notes
Lack of process or understanding, where businesses are blind to the concept of technical debt, and make decisions without considering the implications.

Common Causes of Technical Debt

Tightly-coupled
components

Presenter
Presentation Notes
Tightly-coupled components, where functions are not modular, the software is not flexible enough to adapt to changes in business needs.

Common Causes of Technical Debt

Lack of a test suite

Presenter
Presentation Notes
Lack of a test suite, which encourages quick and risky band-aids to fix bugs.

Common Causes of Technical Debt

Lack of documentation

Presenter
Presentation Notes
Lack of documentation, where code is created without necessary supporting documentation. The work to create any supporting documentation represents a debt that must be paid.

Common Causes of Technical Debt

Lack of collaboration

Presenter
Presentation Notes
Lack of collaboration, where knowledge isn't shared around the organization and business efficiency suffers, or junior developers are not properly mentored.

Common Causes of Technical Debt

Parallel development

Presenter
Presentation Notes
Parallel development on two or more branches accrues technical debt because of the work required to merge the changes into a single source base. The more changes that are done in isolation, the more debt is piled up.

Common Causes of Technical Debt

Delayed refactoring

Presenter
Presentation Notes
Delayed refactoring – As the requirements for a project evolve, it may become clear that parts of the code have become inefficient or difficult to edit and must be refactored in order to support future requirements. The longer that refactoring is delayed, and the more code is added, the bigger the debt.

Common Causes of Technical Debt

Lack of alignment to
standards

Presenter
Presentation Notes
Lack of alignment to standards, where industry standard features, frameworks, technologies are ignored. Eventually, integration with standards will come, doing sooner will cost less (similar to 'delayed refactoring').

Common Causes of Technical Debt

Lack of knowledge

Presenter
Presentation Notes
Lack of knowledge, when the developer simply doesn't know how to write elegant code.

Common Causes of Technical Debt

Lack of ownership

Presenter
Presentation Notes
Lack of ownership, when outsourced software efforts result in in-house engineering being required to refactor or rewrite outsourced code.

Common Causes of Technical Debt

Poor technical
leadership

Presenter
Presentation Notes
Poor technological leadership where poorly thought out commands handed down the chain of command increases the technical debt rather than reduce it.

Common Causes of Technical Debt

Last minute
specification changes

Presenter
Presentation Notes
Last minute specification changes; these have potential to percolate throughout a project but no time or budget to see them through with documentation and checks.

Common Causes of Technical Debt

• Insufficient up-front definition

• Business pressures

• Lack of process or understanding

• Tightly-coupled components

• Lack of a test suite

• Lack of documentation

• Lack of collaboration

• Parallel development

• Delayed refactoring

• Lack of alignment to standards

• Lack of knowledge

• Lack of ownership

• Poor technical leadership

• Last minute specification changes

SOLID Principles
Software Craftsmanship for New Developers

S.O.L.I.D.

• First five object-oriented design principles
• S – Single-responsibility principle
• O – Open-closed principle
• L – Liskov substitution principle
• I – Interface segregation principle
• D – Dependency Inversion Principle

Presenter
Presentation Notes
These principles, when combined together, make it easy for a programmer to develop software that is easy to maintain and extend. They also make it easy for developers to avoid code smells, easily refactor code, and are also part of the agile.

Single Responsibility Principle (SRP)

A module should have one, and
only one, reason to change

Presenter
Presentation Notes
Might be the least well understood – to easy to hear the name and then assume that it means that every module should do just one thingThere is a principle like that – A function should do one and only one, thingHistorically, the SRB has been described as: A module should have one, and only one, reason to change

Single Responsibility Principle (SRP)

A module should have one, and
only one, reason to change

Single Responsibility Principle (SRP)

A module should have one, and
only one, reason to change

Presenter
Presentation Notes
Really referring to one or more people who require a change; final version of SRP is: A module should be responsible to one, and only one, actor

Single Responsibility Principle (SRP)

CFO

COO

CTO

Employee

+ Caculate Pay
+ ReportHours
+ Save

Presenter
Presentation Notes
By putting the source code for these three methods into a single Employee class, the developers have coupled each of these actors to the others. This coupling can cause the actions of the CFO’s team to affect something that the COO’s team depends on.For example, suppose that the CalculatePay function and the ReportHours function share a common algorithm for calculating non-overtime hours. Not wanting to duplicate code, the developers put that algorithm into a function named RegularHours.Now suppose the CFO’s team decides that the way non-overtime hours are calculated needs to be tweaked. In contrast, the COO’s team in HR does not want that particular tweak because they use non-overtime hours for a different purpose.A developer is tasked to make the change, and sees the convenient RegularHours function called by the CalculatePay method. Unfortunately, that developer does not notice that the function is also called by the ReportHours function. The developer makes the change and carefully tests its. The CFO’s team validates that the new function works as desired and the system is deployed.Of course, the COO’s team doesn’t know that this is happen and continue to use the reports generated y the ReportHours function – but now they contain incorrect numbers. Eventually the problem is discovered, and the COO is livid because the bad data has cost his budget greatly.

Open-Closed Principle (OCP)

A software artifact should be
open for extension but closed

for modification

Presenter
Presentation Notes
In other words, the behavior of a software artifact ought to be extendable, without having to modify that artifact.If simple extension to the requirements force massive changes to the software, then the architects of that software system have engaged in a spectacular failureThe OCP is one of the diving forces behind the architecture of systems. The goal is to make the system easy to extend without incurring a high impact of change.

Liskov Substitution Principle (LSP)

Let q(x) be a property provable about
objects of x of type T. Then q(y) should

be provable for objects y of type y where
S is a subtype of T.

Liskov Substitution Principle (LSP)

Let q(x) be a property provable about
objects of x of type T. Then q(y) should

be provable for objects y of type y where
S is a subtype of T.

Liskov Substitution Principle (LSP)

Every derived class should be
substitutable for their base class

Liskov Substitution Principle (LSP)

Every derived class should be substitutable for their base class

Billing License

+ CalculateFee()

Personal License

+ CalculateFee()

Business License

+ CalculateFee()

Presenter
Presentation Notes
Image that we have a class named License which has a method named CalculateFee, which is called by the Billing application. There are two “subtypes” of License called PersonalLicense and BusinessLicense. They use different algorithms to calculate the license fee.This design conforms to the LSP because the behavior of the Billing application does not depend, in any way, on which of the two subtypes it uses. Both of the subtypes are substitutable for the License type.

Interface Segregation Principle (ISP)

A client should never be forced to implement
an interface that it does not use

Clients should not be forced to depend on
methods they do not use

Presenter
Presentation Notes
Example: Shape interface with area and volume function would violate this principle when applied to something like a Square class. Instead break those apart.

Dependency Inversion Principle (DIP)

Entities must depend on
abstractions not on concretions.

Presenter
Presentation Notes
Entities must depend on abstractions not on concretions. It states that the high level module must not depend on the low level module, but they should depend on abstractions.Tells us that the most flexible systems are those in which source code dependencies refer only to abstractions, not concretions.

Other Key Principles
Software Craftsmanship for New Developers

DRY – Don’t Repeat Yourself

Every piece of knowledge must have a
single, unambiguous, authoritative

representation within a system

Presenter
Presentation Notes
Every piece of knowledge must have a single, unambiguous, authoritative representation within a systemAlternative is to have the same thing expressed in two or more place. If you change one, you have to remember to change the others.It isn’t a question of whether you will remember: it’s a question of when you will forget

• If you write it once, think about
encapsulating it.

• If you write it twice, you have to
encapsulate it.

• If your write it three times,
programming isn’t for you.

Phil Japikse, Microsoft MVP, ASP Insider, MCSD,
MCDBA, PSM II, PSD, CSM, Consultant, Coach,
Author, Trainer

Presenter
Presentation Notes
A paraphrase of a Boy Scout rule states that we should always leave the code cleaner than we found it.

KISS – Keep it Simple Stupid

The simplest explanation tends to be
the right one

Presenter
Presentation Notes
Reportedly coined by Kelly Johnson – lead engineer at the Lockheed Skunk Works (creators of the U-2 and SR-71 sky plans, among many others)

YANGI – You Aren’t Going to Need It

Implement things when you actually
need them

Presenter
Presentation Notes
Always implement things when you actually need them, never when you just foresee that you need them.Principle behind XP practice of “do the simplest thing that could possibly work”

Key Practices
Software Craftsmanship for New Developers

TDD – Test Driven Development

Repetition of very short development cycle

Requirements turned into
very specific test cases

Software is written only to
pass new tests

Presenter
Presentation Notes
Software development process that relies on the repetition of a very short development cycle:Requirements are turned into very specific test casesThen, software is written only to pass the new tests

Three Laws of TDD

You are not allowed to write any
production code until you have first

written a failing unit test

Three Laws of TDD

You are not allowed to write more of a
unit test than is sufficient to fail – and

not compiling is failing

Three Laws of TDD

You are not allowed to write more
code that is sufficient to pass the

currently failing unit test

Pair Programing

Two programmers work together at
one workstation

Presenter
Presentation Notes
Technique in which two programmers work together at one workstationThe driver writes code while the observer reviews each line of code as it is typed.

Practicing – Coding Katas

Practice, Practice, Practice

Practice on how to solve
the problem

Presenter
Presentation Notes
When practicing – focus on the techniques you are using and not in solving the problemPractice on how to solve the problem

Practicing – Coding Katas

Practice, Practice, Practice

Practice on how to solve
the problem

Presenter
Presentation Notes
When practicing – focus on the techniques you are using and not in solving the problemPractice on how to solve the problem

Practicing – Coding Katas

Practice, Practice, Practice

Practice on how to solve
the problem

• codingdojo.org/kata
• Codekata.com
• Codewars.com

Presenter
Presentation Notes
When practicing – focus on the techniques you are using and not in solving the problemPractice on how to solve the problem

Code Smells
Software Craftsmanship for New Developers

Presenter
Presentation Notes
A code smell is any characteristic in the source code that possibly indicates a deeper problem. Determining what is and is not a code smell is subjective, and varies by language, developers, and development methodology.One way to look at smells is with respect to principles and quality: “Smells are certain structures in the code that indicate violation of fundamental design principles and negatively impact design quality.”Code smells are usually not bugs; they are not technically incorrect and do not prevent the program from functioning. Instead, they indicate weakness in design that may slow down development or increase the risk of bugs or failures in the future. Bad code smells can be an indicator of factors that contribute to technical debt.A 2015 study utilizing automated analysis for half a million source code commits and the manual examination of 9164 commits determined to exhibit “code smells” found that:There exists empirical evidence for the consequences of technical debt, but there exists only anecdotal evidence as to how, when, or why this occursCommon wisdom suggest that urgent maintenance activities and pressure to deliver features while prioritizing time-to-market over code quality are often the causes of such smells

Code Smells

Comments Environment

Functions General

Names Tests

Code Smells – Comments

Inappropriate Information

Presenter
Presentation Notes
Inappropriate InformationIt is inappropriate for a comment to hold information better held in a different kind of system such as your source code control system, your issue tracking system, or any other record-keeping system.Change histories just clutter up source files with volumes of historical and uninteresting text.In general, meta-data such as authors, last-modified-date, SPR number, and so on should not appear in comments.Comments should be reserved for technical notes about the code and design.

Code Smells – Comments

Obsolete Comment

Presenter
Presentation Notes
Obsolete CommentA comment that has gotten old, irrelevant, and incorrect is obsolete.Comments get old quickly. It is best not to write a comment that will become obsolete.They become floating islands of irrelevance and misdirection in the code.

Code Smells – Comments

Redundant Comment

i++ // increment i

Presenter
Presentation Notes
Obsolete CommentA comment that has gotten old, irrelevant, and incorrect is obsolete.Comments get old quickly. It is best not to write a comment that will become obsolete.They become floating islands of irrelevance and misdirection in the code.

Code Smells – Comments

Poorly Written Comment

Presenter
Presentation Notes
Poorly Written CommentA comment worth writing is worth writing well. If you are going to write a comment, take the time to make sure it is the best comment you can write. Choose your words carefully. Use correct grammar and punctuation. Do not ramble. Do not state the obvious. Be brief.

Code Smells – Comments

Commented-Out Code

Presenter
Presentation Notes
Commented-Out CodeWho knows how old it is? Who knows whether or not it’s meaningful? Yet no one will delete it because everyone assumes someone else needs it or has plans for it.The code sits there and rots, getting less and less relevant with every passing day. It calls functions that no longer exists. It uses variable whose names have changed. It follows conventions that are long obsolete. It pollutes the modules that contain it and distracts the people who try to read it. Commented-out code is an abomination.When you see commented-out code, delete it. Do not worry, the source code control system still remember it.

Code Smells – Environment

Build Requires More Than
One Step

Presenter
Presentation Notes
Build Requires More Than One StepBuilding a project should be a single trivial operation. You should not have to check many little pieces out from source code control. You should not need a sequence of arcane commands or context dependent scripts in order to build the individual elements. You should be able to check out the system with one simple command and then issue one other simple command to build it.Continuous Integration

Code Smells – Environment

Build Requires More Than
One Step

Presenter
Presentation Notes
Build Requires More Than One StepBuilding a project should be a single trivial operation. You should not have to check many little pieces out from source code control. You should not need a sequence of arcane commands or context dependent scripts in order to build the individual elements. You should be able to check out the system with one simple command and then issue one other simple command to build it.Continuous Integration

Code Smells – Environment

Build Requires More Than
One Step

Presenter
Presentation Notes
Build Requires More Than One StepBuilding a project should be a single trivial operation. You should not have to check many little pieces out from source code control. You should not need a sequence of arcane commands or context dependent scripts in order to build the individual elements. You should be able to check out the system with one simple command and then issue one other simple command to build it.Continuous Integration

Code Smells – Environment

Tests Require More Than
One Step

Presenter
Presentation Notes
Tests Require More Than One StepYou should be able to run all the unit tests with just one command. In the best case you can run all the tests by clicking on one button in your IDE. In the worst case you should be able to issue a single simple command in a shell. Being able to runn all the tests is so fundamental and so important that it should be quick, easy, and obvious to do.Run tests as part of your automated build processVisual Studio Enterprise – Live Unit Test

Code Smells – Function

Dead Function

Presenter
Presentation Notes
Dead FunctionMany other function smellsMethods that are never called should be discarded.Keeping dead code around is wasteful.Do not worry, your source code control system still remembers it.

Code Smells – General

Obvious Behavior is
Unimplemented

Presenter
Presentation Notes
Obvious Behavior is UnimplementedFollowing the principle of Least Surprise, any function or class should implement the behaviors that another programmer could reasonably expect.Example: Function that translates the name of a day to an enumeration that represents the dayWe would expect the string “Monday” to be translated to the Day.Monday enumeration.We would also expect the common abbreviations to be translatedWe would expect the function to ignore caseWhen an obvious behavior is not implemented, readers and users of the code can no longer depend on their intuition about function names – lose trust in the original author and must fall back on reading the details of the code

Code Smells – General

Incorrect Behavior at the
Boundaries

Presenter
Presentation Notes
Incorrect Behavior at the BoundariesSeems obvious to say code should behave correctly – problem is that we seldom realize just how completed correct behavior isDevelopers often write functions that they think will work, and then trust their intuition rather than going to the effort to prove their code works in all the corner and boundary cases.There is no replacement for due diligenceEach boundary condition, every corner case, every quirk, and exception represents something that can confound an elegant and intuitive algorithmDo not rely on your intuition – look for every boundary condition and write a test for itExample: Mary Ann and testing

Code Smells – General

Overridden Safeties

Presenter
Presentation Notes
Overridden SafetiesChernobyl melted down because the plant manager overrode each of the safety mechanisms one by one because they were making it inconvenient to run an experiment. The result was that the experiment did not get run, and the world saw it’s first major civilian nuclear catastrophe.It is risky to override safeties.Turning off certain compiler warnings (or all warnings) may help you get the build to succeed, but at the risk of endless debugging sessionsTurning off failing tests and telling yourself you will get them to pass later is as bad as pretending your credit cards are free money

Code Smells – General

Duplication (DRY)

Presenter
Presentation Notes
DuplicationThis is one of the most important rules in software developmentEvery time you see duplication in the code, it represents a missed opportunity for abstractionCoding becomes faster and less error prone because you have raised the abstraction levelThe most obvious form of duplication is when you have clumps of identical code that look like some programmers went wild with the mouse, pasting the same code over and over again. These should be replaced with simple methods.A more subtle form are the switch/case or if/else chains that appear again and again in various methods, always testing for the same set of conditionsStill more subtle are modules that have similar algorithms, but do not share similar lines of code – this is still duplication and should be addressedFind and eliminate duplication wherever you can

Code Smells – General

Dead Code

Presenter
Presentation Notes
Dead CodeDead code is code that isn’t executedFind it in the body of an IF statement that checks for a condition that cannot happenFind int in the catch block of a try that never throwsFind it in little utility methods that are never called or switch/case conditions that never occurProblem with dead code is that after awhile it starts to smell. The older it is, the strong and sourer the odor becomes. This is because dead code is not completely updated when designs changeIt still compiles, but it does not follow newer conventions or rulesWritten at a time when the system was differentWhen you find dead code, do the right thing – give it a decent burial; delete it from the systemStatic code analysis tools

Code Smells – General

Inconsistency

Presenter
Presentation Notes
InconsistencyIf you do something a certain way, do all similar things in the same way – goes back to the principle of least surpriseBe careful with the conventions you chose, and once chosen, be careful to continue to follow themIf within a particular function you use a variable named response to hold an HttpResponseMessage, then use the same variable name consistently in other functions that use HttpResponseMessage objectsSimple consistency like this, when reliably applied, can make code much easier to read and modify

Code Smells – General

Clutter

Presenter
Presentation Notes
ClutterOf what use is a default constructor with no implementation – all it serves to do is clutter up the code with meaningless artifactsVariables that are not usedFunctions that are never calledComments that add no informationAll these things are clutter and should be removedKeep your source code clean, well organized, and free of clutter

Code Smells – General

Misplaced Responsibility

Presenter
Presentation Notes
Misplaced ResponsibilityOne of the most important decisions a software developer can make is where to put codeCode should be placed where a reader would naturally expect it to beFor example, perhaps we need to print a report with the total or hours that an employee worked – we could sum up those hours in the code that prints the report or we could try to keep a running total in the code that accepts time cardsClearly, there are sometimes performance reasons why the total should be calculated as time cards are accepted rather than when the report is printed

Code Smells – General

Function Names Should Say
What They Do

DateTime newDate = date.add(5)
DateTime newDate = date.AddDays(5)

Presenter
Presentation Notes
Function Names Should Say What They DoLook at this code. Would you expect this to add five days to the date? Or is it weeks or hours? Is the date instance changed or does the function just return a new DateTime without changing the old one? You cannot tell from the call what the function does.If the function adds five days to the date and changes the date, then it should be called something like AddDaysIf you have to look at the implementation (or documentation) of the function to know what it does, then you should work to find a better name or rearrange the functionality so it can be placed in functions with better names.

Code Smells – General

Not Following Standard
Conventions

Presenter
Presentation Notes
Follow Standard ConventionsEvery team should follow a coding standard based on common industry norms. This coding standard should specify things like where to declare instance variables; how to name classes, methods, and variables; where to put braces; and so on. The team should not need a document to describe these conventions because their code provides the examples.Everyone on the team should follow these conventions. The means that each team member must be mature enough to realize it does not matter a whit where you put your braces as long as you all agree on where to put them

Code Smells – General

Replace Magic Numbers
with Named Constants

3.141592653589793
3.1415927535897933.141592753589793

Presenter
Presentation Notes
Replace Magic Numbers with Named ConstantsProbably one of the oldest rules in software developmentIn general it is a bad idea to have raw numbers in your code – you should hid them behind well-named constantsFor exampleThe number 86,400 should be hidden behind the constant SecondsPerDayIf you are printing 55 lines per page, then the constant 55 should be hidden behind the constant LinesPerPage (or a configuration)Martin talks about common values like 5280 feet per mile; 8 hours per dayWhat about Pi? - 3.1459265358973Every time someone see 33141592753589073, they know it is Pi, and so they fail to scrutinize it

Code Smells – General

Functions Doing More Than
One Thing

Presenter
Presentation Notes
Functions Should Do One ThingIt is often tempting to create functions that have multiple second that perform a series of operations. Functions of this kind do more than one thing, and should be converted into many smaller functions, each of which does one thingCreateOrUpdate method

Code Smells – Names

Undescriptive Names

Presenter
Presentation Notes
Chose Descriptive NamesDo not be too quick to choose a name – make sure the name is descriptive; remember that meanings tend to drift as software evolves, so frequently reevaluate the appropriateness of the names you choseThis is not just a “feel-good” recommendations – names in software are 90% of what makes software readable. You need to take the time to choose them wisely and keep them relevant. Names are too important to treat carelesslyExample: database table name aliases

CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View
@ID INT = 0,
@cond_workout_ID INT = 0

AS
BEGIN

SELECT al.ID,
al.cond_workout_ID,
al.activity,
al.mins,
al.cal_burn,
a.Category,
ai.ID AS intensity_id,
ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al
INNER JOIN HII_Cond_Activities a ON a.ID = al.activity
LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity
WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)
ORDER BY al.created_date

END

Presenter
Presentation Notes
Forget that the name of the procedure and the tables it reference are horrendous (and I formatted this to look a little better); look at how we use alias names that mean almost nothingIts hard to tell right away what AI, AL, and A mean

CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View
@ID INT = 0,
@cond_workout_ID INT = 0

AS
BEGIN

SELECT al.ID,
al.cond_workout_ID,
al.activity,
al.mins,
al.cal_burn,
a.Category,
ai.ID AS intensity_id,
ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al
INNER JOIN HII_Cond_Activities a ON a.ID = al.activity
LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity
WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)
ORDER BY al.created_date

END

Presenter
Presentation Notes
Forget that the name of the procedure and the tables it reference are horrendous (and I formatted this to look a little better); look at how we use alias names that mean almost nothingIts hard to tell right away what AI, AL, and A mean

CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View
@ID INT = 0,
@cond_workout_ID INT = 0

AS
BEGIN

SELECT al.ID,
al.cond_workout_ID,
al.activity,
al.mins,
al.cal_burn,
a.Category,
ai.ID AS intensity_id,
ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al
INNER JOIN HII_Cond_Activities a ON a.ID = al.activity
LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity
WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)
ORDER BY al.created_date

END

Presenter
Presentation Notes
When I look at this at my normal resolution, it is very easy to not see the different between ai and ALNot to say aliases are bad – especially considering the atrocious table names

CREATE PROCEDURE dbo.GetWorkActivitiesLog
@Id INT = 0,
@WorkoutId INT = 0

AS
BEGIN

SELECT ActivityLog.ID,
ActivityLog.cond_workout_ID,
ActivityLog.activity,
ActivityLog.mins,
ActivityLog.cal_burn,
Activities.Category,
Intensity.ID AS intensity_id,
Intensity.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log AS ActivityLog
INNER JOIN HII_Cond_Activities AS Activities ON a.ID = ActivityLog.activity
LEFT JOIN HII_Cond_Activities_Intensity Intensity

ON Intensity.Activity_ID = Activities.ID AND Intensity.ID=ActivityLog.intensity
WHERE ActivityLog.active=1
AND (ActivityLog.cond_workout_ID = @WorkoutId OR ActivtyLog.Id = @ID)

ORDER BY ActivityLog.created_date

END

Presenter
Presentation Notes
Example of a better way to write the same procedure

CREATE PROCEDURE dbo.GetWorkActivitiesLog
@Id INT = 0,
@WorkoutId INT = 0

AS
BEGIN

SELECT ActivityLog.ID,
ActivityLog.cond_workout_ID,
ActivityLog.activity,
ActivityLog.mins,
ActivityLog.cal_burn,
Activities.Category,
Intensity.ID AS intensity_id,
Intensity.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log AS ActivityLog
INNER JOIN HII_Cond_Activities AS Activities ON a.ID = ActivityLog.activity
LEFT JOIN HII_Cond_Activities_Intensity Intensity

ON Intensity.Activity_ID = Activities.ID AND Intensity.ID=ActivityLog.intensity
WHERE ActivityLog.active=1
AND (ActivityLog.cond_workout_ID = @WorkoutId OR ActivtyLog.Id = @ID)

ORDER BY ActivityLog.created_date

END

Presenter
Presentation Notes
Still using aliases, but much easier to understand what is what

Code Smells – Names

Encoded Names

intRepeat repeatCount

Presenter
Presentation Notes
Avoid EncodingsNames should be encoded with type or scope informationPrefixes such as m_ or f are useless in today’s environmentsToday’s environments provide all that information without having to mangle the namesKeep your names free of Hungarian pollutionSome Exceptions: Azure Naming Guidelines

Code Smells – Names

Names Not Describing
Side-Effects

public Foo GetFoo() { }
public Foo CreateAndGetFoo() { }

public Foo Create () { }

Presenter
Presentation Notes
Names Should Describe Side-EffectsNames should describe everything that a function, variable, or class is or does Do not hide side effects with a nameDo not use a simple verb to describe a function that does more than just that simple actionFor example, consider a method called GetFoo which will create the Foo object if it doesn’t exists. A better name would be CreateAndGetFoo (actually it would be better for these to be two separate methods)

Code Smells – Tests

Insufficient Tests

Presenter
Presentation Notes
Insufficient TestsHow many tests should be in a test suite? Unfortunately, the metric many programmers use is “That seems like enough”A test suite should test everything that could possibly break

Code Smells – Tests

Not Using a Test Coverage
Tool

Presenter
Presentation Notes
Use a Test Coverage ToolCoverage tools report gaps in your testing strategy – they make it easy to find modules, classes, and functions that are insufficiently testedMost IDEs give you a visual indication, marking lines that are covered in green and those that are uncovered in red – this makes it quick and easy to find if or catch statements whose bodies have not been checkedDoes not mean that everything must be 100% test covered (exceptions that can never happen)

Code Smells – Tests

Skipping Trivial Tests

Presenter
Presentation Notes
Don’t Skip Trivial TestsThey are easy to write and their documentary value is higher than the cost to product them

Code Smells – Tests

Not Testing Boundary
Conditions

Presenter
Presentation Notes
Test Boundary ConditionsTake special care to test boundary conditions – we often get the middle of an algorithm right, but misjudge the boundaries

Code Smells – Tests

Exhaustively Test Near
Bugs

Presenter
Presentation Notes
Exhaustively Test Near BugsBugs tend to congregate – when you find a bug in a function, it is wise to do an exhaustive test of that functionYou’ll probably find that the bug was not alone

Code Smells – Tests

Tests Should be Fast

Presenter
Presentation Notes
Tests Should Be FastA slow test is a test that will not get run – when things get tight, it is the slow tests that will be dropped from the suiteSo do what you must to keep your tests fast

Getting More
Software Craftsmanship for New Developers

Books

Presenter
Presentation Notes
Clean Code: A Handbook of Agile Software Craftsmanship – Bob MartinClean Architecture: A Craftsman’s Guide to Software Structure and Design – Bob MartinThe Clean Code: A Code of Conduct for Professional Programmers – Bob MartinThe Software Craftsman: Professionalism, Pragamatism, Pride – Sandro MancusoThe Pragmatic Programmer – Andrew Hunt & Dave ThomasCode Complete – Steve McConnell

Podcasts

Presenter
Presentation Notes
Coding Blocks – Allen Underwood, Michael Outlaw, Joe ZackHerding Code – K. Scott Allen, Kevin Dente, Scott Koon, Jon GallowayThe InfoQ Podcast – Wes ReiszDeveloper Tea – Jonathan Cutrell.NET Rocks! – Carl Franklin and Richard CampbellDon’t just listen to tech podcasts

Live Coding

MicrosoftDeveloper
VlsualStudio

425show CodeItLive

ardalis CLDubya CodingGarden BaldBeardedBuilder CSharpFritz TaleLearnCode

Presenter
Presentation Notes
VendorsMicrosoft Developer & Visual StudioThe 425 ShowCode It LiveThe Live CodersArdalis – Steve SmithCLDubya – Corey WeathersCodingGarden – CJBaldBeardedBuilder – Michael JolleyCSharpFritz – Jeff FritzTaleLearnCode – Chad Green

Meetups

Virtual/Hybrid Meetups

Presenter
Presentation Notes
.NET Virtual User GroupLouisville .NET MeetupTulsa .NET User Group

Conferences

Nebraska.Code() — July 13-15, 2021

Prairie.Code() — September 23-24, 2021

Code PaLOUsa — August 18 – 20, 2021

Software Craftsmanship is

about professionalism in

software development.

Thank You

chadgreen@chadgreen.com
TaleLearnCode
ChadGreen.com
ChadGreen & TaleLearnCode
ChadwickEGreen

	Slide Number 1
	Who is Chad Green
	What is Software Craftsmanship
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	What Software Craftsmanship is not
	Why Software Craftsmanship
	What is Software Development
	Agile Manifesto Ignites a Spark
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	History of Software Craftsmanship
	Manifesto for Software Craftsmanship
	Manifesto for Software Craftsmanship
	Slide Number 33
	Manifesto for Software Craftsmanship
	Manifesto for Software Craftsmanship
	Slide Number 36
	Technical Debt
	What is Technical Debt
	Example of Technical Debt
	Example of Technical Debt
	Example of Technical Debt
	Example of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	Common Causes of Technical Debt
	SOLID Principles
	S.O.L.I.D.
	Single Responsibility Principle (SRP)
	Single Responsibility Principle (SRP)
	Single Responsibility Principle (SRP)
	Single Responsibility Principle (SRP)
	Open-Closed Principle (OCP)
	Liskov Substitution Principle (LSP)
	Liskov Substitution Principle (LSP)
	Liskov Substitution Principle (LSP)
	Liskov Substitution Principle (LSP)
	Interface Segregation Principle (ISP)
	Dependency Inversion Principle (DIP)
	Other Key Principles
	DRY – Don’t Repeat Yourself
	Slide Number 73
	KISS – Keep it Simple Stupid
	YANGI – You Aren’t Going to Need It
	Key Practices
	TDD – Test Driven Development
	Three Laws of TDD
	Three Laws of TDD
	Three Laws of TDD
	Pair Programing
	Practicing – Coding Katas
	Practicing – Coding Katas
	Practicing – Coding Katas
	Code Smells
	Code Smells
	Code Smells – Comments
	Code Smells – Comments
	Code Smells – Comments
	Code Smells – Comments
	Code Smells – Comments
	Code Smells – Environment
	Code Smells – Environment
	Code Smells – Environment
	Code Smells – Environment
	Code Smells – Function
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – General
	Code Smells – Names
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Code Smells – Names
	Code Smells – Names
	Code Smells – Tests
	Code Smells – Tests
	Code Smells – Tests
	Code Smells – Tests
	Code Smells – Tests
	Code Smells – Tests
	Getting More
	Books
	Podcasts
	Live Coding
	Meetups
	Virtual/Hybrid Meetups
	Conferences
	Slide Number 130
	Thank You

