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What Software Craftsmanship is not
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• Beautiful code

• Test-Driven Development

• Self-selected group of people

• Specific technologies or methodologies

• Certifications

• Religion



Software Craftsmanship for Non Developers

What is Software Craftsmanship
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• Software developers have had hard time defining themselves:

• Historically practitioners of well-defined statistical analysis and 
mathematical rigor of a scientific approach with computational 
theory

• Changed to an engineering approach with connotations of 
precision, predictability, measurement, risk mitigation, and 
professionalism
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Craft, Trade, Engineering, Science, or Art
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• Craft/Trade – Profession that requires particular skills and knowledge of skilled work

• Engineering – Creative application of science, mathematical methods, and empirical 
evidence to the innovation, design, construction, operation, and maintenance of 
structures, machines, materials, devices, systems, processes, and organizations

• Science – Systematic enterprise that builds and organizes knowledge in the form of 
testable explanations and predictions about the universe

• Art – Diverse range of human activities in creating visual, auditory, or performing 
artifacts, expressing the author’s imaginative, conceptual idea, or technical skill, 
intended to be appreciated for their beauty or emotional power
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What is Software Craftsmanship
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Agile Manifesto question some these assumptions

Individuals and interactions over processes and tools



Software Craftsmanship is about 
professionalism in software development.
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Software Craftsmanship History
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• 1992 – Jack W. Reeves publishes “What Is Software Design?” essay
• 1997 – Andrew Hunt and David Thomas publish The Pragmatic Programmer
• 2001 – Pete McBreen publishes Software Craftsmanship
• 2002 – Software Apprenticeship Summit
• 2006 – 8th Light Founded
• 2008 – Bob Martin proposes fifth value for the Agile Manifesto: 

Craftsmanship over Crap
• 2008 – Bob Martin publishes Clean Code: A Handbook of Agile Software 

Craftsmanship
• 2008 – Software Craftsmanship Summit
• 2009 – Manifesto for Software Craftsmanship
• 2011 – Bob Martin publishes The Clean Coder: A Code of Conduct for 

Professional Programmers
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Manifesto for Software Craftsmanship
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Not only working software,
but also well-crafted software

Not only responding to change,
but also steadily adding value

Not only individuals and interactions,
but also a community of professionals

Not only customer collaboration,
but also productive partnerships
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Manifesto for Software Craftsmanship
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Not only working software,
but also well-crafted software
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Manifesto for Software Craftsmanship
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Not only responding to change,
but also steadily adding value



Try and leave this world a little better than you 
found it, and when you turn comes to die you can 
die happy in feeling that at any rate you have not 
wasted your time but have done your best.

Robert Stephenson Smyth Bader-Powell, founder of 
The Scout Association
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Manifesto for Software Craftsmanship
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Not only individuals and interactions,
but also a community of professionals
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Manifesto for Software Craftsmanship
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Not only customer collaboration,
but also productive partnerships
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What is Technical Debt
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• Reflects the implied cost of additional rework caused by choosing 
an easy solution now instead of using a better approach that would 
take longer

• Technical debt can be compared to monetary debt – If not repaid, it 
can accumulate interest, making it hard to implement changes later 
on
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Example of Technical Debt
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• Start writing an application and there is no need for user roles –
everyone can do everything

• Requirement comes in for a permission for a specific requirement

• Some time later another things requires the differentiation of users, 
and then another and another

• The company has the opportunity to add five customers in a week –
but really need another permission change in a couple of days
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Common Causes of Technical Debt
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• Insufficient up-front definition

• Business pressures

• Lack of process or understanding

• Tightly-coupled components

• Lack of a test suite

• Lack of documentation

• Lack of collaboration

• Parallel development

• Delayed refactoring

• Lack of alignment to standards

• Lack of knowledge

• Lack of ownership

• Poor technological leadership
• Last minute specification 

changes
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S.O.L.I.D.
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• First five object-oriented design principles
• S – Single-responsibility principle
• O – Open-closed principle
• L – Liskov substitution principle 
• I – Interface segregation principle
• D – Dependency Inversion Principle
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Single Responsibility Principle (SRP)
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• A module should have one, and only one, reason to change
• A module should be responsible to one, and only one, actor
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Single Responsibility Principle (SRP)
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• A module should be responsible to one, and only one, actor

CFO

COO

CTO

Employee

+ Caculate Pay
+ ReportHours
+ Save

Class violates the SRB because the three methods 
are responsible to different actors

• The CalculatePay method is specified by the 
accounting department, which reports to the CFO

• The ReportHours method is specified and used by 
the human resources department, which reports to 
the COO

• The Save method is specified b the database 
administrators, who report to the CTO
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Open-Closed Principle (OCP)
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• A software artifact should be open for extension but closed for 
modification
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Liskov Substitution Principle (LSP)
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• Let q(x) be a property provable about objects of x of type T.  Then 
q(y) should be provable for objects y of type y where S is a subtype 
of T

• Every subclass/derived class should be substitutable for their 
base/parent class

Billing License

+ CalculateFee()

Personal License

+ CalculateFee()

Business License

+ CalculateFee()
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Interface Segregation Principle (ISP)
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• A client should never be forced to implement an interface that it 
does not use or clients should not be forced to depend on methods 
they do not use
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Dependency Inversion Principle (DIP)
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• Entities must depend on abstractions not on concretions.  It states 
that the high level module must not depend on the low level module, 
but they should depend on abstractions.
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DRY – Don’t Repeat Yourself
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• Every piece of knowledge must have  a single, unambiguous, 
authoritative representation within a system

• Alternative is to have the same thing expressed in two or more 
place.  If you change one, you have to remember to change the 
others.

• It isn’t a question of whether you will remember: it’s a question of 
when you will forget



If you write it once, think about encapsulating it.  
If you write it twice, you have to encapsulate it.  If 
you write it three times, programming isn’t for 
you.

Phil Japikse, Microsoft MVP, ASPInsider, MCSD, 
MCDBA, PSM II, PSD, CSM, Consultant, Coach, 
Author, Trainer
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KISS – Keep it Simple Stupid
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• The simplest explanation tends to be the right one



Software Craftsmanship for Non Developers

YAGNI – You Aren’t Going to Need It
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• Always implement things when you actually need them, never when 
you just foresee that you need them

• Principle behind XP practice of “do the simplest thing that could 
possibly work”



Key Practices
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TDD – Test Driven Development
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• Software development process that relies on the repetition of very 
short development cycle: requirements are turned into very specific 
test cases, then the software is improved to pass the new tests, 
only

• Three Laws of TDD
1. You are not allowed to write any production code until you 

have first written a failing unit test.
2. You are not allowed to write more of a unit test than is 

sufficient to fail – and not compiling is failing
3. You are not allowed to write more production code that is 

sufficient to pass the currently failing unit test
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Pair Programming
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• Technique in which two programmers work together at one 
workstation
• The driver writes code while the observer reviews each line of 

code as it is typed



Software Craftsmanship for Non Developers

Practicing – Coding Katas
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• Practice, Practice, Practice
• Practice on how to solve the problem
• Katas – simple coding exercises

• codingdojo.org/kata
• codekata.com
• codewars.com
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Code Smells - Comments
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• Inappropriate Information
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Code Smells - Comments
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• Inappropriate Information
• Obsolete Comment
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Code Smells - Comments
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• Inappropriate Information
• Obsolete Comment
• Redundant Comment

i++ // increment i
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Code Smells - Comments
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• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
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Code Smells - Comments
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• Inappropriate Information
• Obsolete Comment
• Redundant Comment
• Poorly Written Comment
• Commented-Out-Code
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Code Smells - Environment
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• Build Requires More Than One Step
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Code Smells - Environment
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• Build Requires More Than One Step
• Tests Require More Than One Step
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Code Smells - Functions
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• Dead Function
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Code Smells - General
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• Obvious Behavior is Unimplemented



Software Craftsmanship for Non Developers

Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication (DRY – Don’t Repeat Yourself)
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Dead Code
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Dead Code
• Inconsistency
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Dead Code
• Inconsistency
• Clutter
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do

DateTime newDate = date.add(5)
DateTime newDate = date.AddDays(5)
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Code Smells - General
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• Obvious Behavior is Unimplemented
• Incorrect Behavior at the Boundaries
• Overridden Safeties
• Duplication
• Base Classes Depending on their Derivatives
• Dead Code
• Inconsistency
• Clutter
• Misplaced Responsibility
• Function Names Should Say What They Do
• Follow Standard Conventions
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Code Smells - General
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• Replace Magic Numbers with Named Constants
3.141592653589793
3.1415927535897933.141592753589793
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Code Smells - General
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• Replace Magic Numbers with Named Constants
• Functions Should Do One Thing
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Code Smells - Names

page
058

• Chose Descriptive Names
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Code Smells – Names: Choose Descriptive Names
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CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View

@ID INT = 0,

@cond_workout_ID INT = 0

AS

BEGIN

SELECT al.ID,

al.cond_workout_ID,

al.activity,

al.mins,

al.cal_burn,

a.Category,

ai.ID AS intensity_id,

ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al

INNER JOIN HII_Cond_Activities a            ON a.ID = al.activity

LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity

WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)

ORDER BY al.created_date

END

CREATE PROCEDURE dbo.HII_Mobile_Cond_Workout_Activities_Log_View

@ID INT = 0,

@cond_workout_ID INT = 0

AS

BEGIN

SELECT al.ID,

al.cond_workout_ID,

al.activity,

al.mins,

al.cal_burn,

a.Category,

ai.ID AS intensity_id,

ai.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log al

INNER JOIN HII_Cond_Activities a            ON a.ID = al.activity

LEFT JOIN HII_Cond_Activities_Intensity ai ON ai.Activity_ID = a.ID AND ai.ID=al.intensity

WHERE al.active=1

AND (cond_workout_ID = @cond_workout_ID OR al.Id = @ID)

ORDER BY al.created_date

END

CREATE PROCEDURE dbo.GetWorkActivitiesLog

@Id INT = 0,

@WorkoutId INT = 0

AS

BEGIN

SELECT ActivityLog.ID,

ActivityLog.cond_workout_ID,

ActivityLog.activity,

ActivityLog.mins,

ActivityLog.cal_burn,

Activities.Category,

Intensity.ID AS intensity_id,

Intensity.Intensity

FROM HII_Mobile_Cond_Workout_Activities_Log AS ActivityLog

INNER JOIN HII_Cond_Activities AS Activities ON a.ID = ActivityLog.activity

LEFT JOIN HII_Cond_Activities_Intensity Intensity ON Intensity.Activity_ID = a.ID AND ai.ID=ActivityLog.intensity

WHERE ActivityLog.active=1

AND (ActivityLog.cond_workout_ID = @WorkoutId OR ActivtyLog.Id = @ID)

ORDER BY ActivityLog.created_date

END
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Code Smells - Names
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• Chose Descriptive Names
• Avoid Encodings

intRepeat repeatCount
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Code Smells - Names
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• Chose Descriptive Names
• Avoid Encodings
• Names Should Describe Side-Effects

public void GetFoo() { }

public void CreateAndGetFoo() { }
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Code Smells - Tests
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• Insufficient Tests
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Code Smells - Tests
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• Insufficient Tests
• Use a Test Coverage Tool
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Code Smells - Tests
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• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
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Code Smells - Tests
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• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
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Code Smells - Tests
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• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
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Code Smells - Tests
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• Insufficient Tests
• Use a Test Coverage Tool
• Don’t Skip Trivial Tests
• Test Boundary Conditions
• Exhaustively Test Near Bugs
• Tests Should Be Fast
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Getting More – Books
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Getting More – Podcasts
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Getting More – Meetups
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Tech Foundations LouisvilleLouisville Tech LadiesDeep Learning and AI For LouisvilleDerby DevOps

Louisville Business Intelligence & Big 
Data Analytics MeetupLouisville Jenkins Area MeetupLouisville Microsoft Azure User GroupLouisville Ruby BrigadeLouisville Open Source 

Programming Meetup Group
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Getting More – Conferences
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Software Craftsmanship is about 
professionalism in software development.



chadgreen@chadgreen.com
chadgreen.com
@ChadGreen
ChadwickEGreen



thank you.


